Newsletter

การเอาชนะอุปสรรค หรือ: ฉันเรียนรู้ที่จะหยุดกังวลและรักปัญญาประดิษฐ์ได้อย่างไร

ทำไมบริษัทจำนวนมากจึงล้มเหลวในการนำ AI มาใช้? อุปสรรคสำคัญไม่ใช่เทคโนโลยี แต่คือมนุษย์ บทความนี้ระบุถึงอุปสรรคสำคัญ 6 ประการ ได้แก่ การต่อต้านการเปลี่ยนแปลง การขาดการมีส่วนร่วมของฝ่ายบริหาร ความปลอดภัยของข้อมูล งบประมาณที่จำกัด การปฏิบัติตามข้อกำหนด และการเรียนรู้อย่างต่อเนื่อง ทางออกคืออะไร? การเปิดตัวโครงการนำร่องเพื่อแสดงให้เห็นถึงคุณค่า ฝึกอบรมพนักงาน และปกป้องข้อมูลสำคัญด้วยระบบเฉพาะทาง AI ไม่เพียงแต่ช่วยเพิ่มประสิทธิภาพ ไม่ใช่แทนที่ แต่จำเป็นต้องอาศัยการเปลี่ยนแปลงกระบวนการ ไม่ใช่เพียงแค่การแปลงเป็นดิจิทัล

การทำลายอุปสรรค: อัลกอริทึมภายในตัวเรา

ปัญญาประดิษฐ์ (AI) กำลังเปลี่ยนแปลงวิธีการทำงานของเรา หลายบริษัทกำลังเผชิญกับความท้าทายในการนำเครื่องมือใหม่ๆ เหล่านี้ไปใช้ในกระบวนการต่างๆ ได้อย่างมีประสิทธิภาพ การเข้าใจอุปสรรคเหล่านี้จะช่วยให้องค์กรต่างๆ สามารถใช้ประโยชน์จาก AI ได้อย่างมีประสิทธิภาพ

ความท้าทายของการอัปเดตอย่างต่อเนื่อง

การพัฒนาอย่างรวดเร็วของ AI ก่อให้เกิดความท้าทายใหม่ๆ แก่ทั้งมืออาชีพและธุรกิจ คนงานต่างกังวลว่า AI จะเข้ามาแทนที่ อย่างไรก็ตาม AI ทำหน้าที่เป็นเครื่องมือที่ช่วยยกระดับงานของพวกเขา ไม่ใช่เข้ามาแทนที่ ผ่านทาง:

  • การทำงานซ้ำๆ ให้เป็นอัตโนมัติ
  • พื้นที่สำหรับกิจกรรมเชิงยุทธศาสตร์
  • การสนับสนุนการตัดสินใจด้วยข้อมูล

การนำเสนอ AI ในฐานะเครื่องมือการทำงานร่วมกันช่วยลดแรงต่อต้านและส่งเสริมการนำเทคโนโลยีนี้มาใช้ แน่นอนว่างานบางอย่างจะหายไปเมื่อเวลาผ่านไป แต่โชคดีที่งานน่าเบื่อที่สุดจะหมดไป ซึ่งหมายถึงไม่ใช่แค่การนำเทคโนโลยีมาใช้ในกระบวนการเท่านั้น แต่ยังรวมถึงการเปลี่ยนแปลงกระบวนการทั้งหมดด้วย กล่าวโดยสรุปคือ ความแตกต่างระหว่างการเปลี่ยนผ่านสู่ดิจิทัลและการเปลี่ยนผ่านสู่ดิจิทัล เรียนรู้เพิ่มเติมได้ที่: https://www.channelinsider.com/business-management/digitization-vs-digitalization/

การคุ้มครองและรักษาความปลอดภัยข้อมูล

ความเป็นส่วนตัวและความปลอดภัยเป็นอุปสรรคสำคัญ บริษัทต่างๆ จำเป็นต้องปกป้องข้อมูลสำคัญโดยการรับรองความถูกต้องแม่นยำของระบบ AI ความเสี่ยงจากการละเมิดและข้อมูลที่ผิดพลาดจำเป็นต้อง:

  • การตรวจสอบความปลอดภัยเป็นประจำ
  • การประเมินซัพพลายเออร์
  • โปรโตคอลการปกป้องข้อมูล

โดยเฉพาะอย่างยิ่ง การใช้ " ตัวกรองอัตโนมัติ " ในการจัดการข้อมูลที่ละเอียดอ่อนที่สุด และการใช้ระบบเฉพาะในการจัดการหรือวิเคราะห์ข้อมูลทั้งหมดขององค์กร ถือเป็นสิ่งจำเป็นอย่างยิ่ง ไม่เพียงแต่ด้วยเหตุผลด้านความปลอดภัยเท่านั้น แต่ยังเพื่อหลีกเลี่ยงการ "เปิดเผย" ข้อมูลที่มีค่าสูงแก่บุคคลที่สามอีกด้วย อย่างไรก็ตาม เช่นเดียวกับที่เกิดขึ้นแล้วในบริบทอื่นๆ การมุ่งเน้นในลักษณะนี้จะยังคงเป็นแนวทางที่ "รอบรู้" เฉพาะสำหรับบางองค์กรเท่านั้น ท้ายที่สุดแล้ว ทุกคนควรทำในสิ่งที่ตนเองต้องการ โดยตระหนักถึงผลประโยชน์ที่แต่ละทางเลือกต้องแลกมาด้วย

ด้านล่างนี้เป็นรายการสั้นๆ ของประเด็นสำคัญ

การจัดการความต้านทานต่อการเปลี่ยนแปลง

การรับเลี้ยงบุตรบุญธรรมต้องมีกลยุทธ์การจัดการที่รวมถึง:

  • การสื่อสารผลประโยชน์
  • การฝึกอบรมอย่างต่อเนื่อง
  • การสนับสนุนเชิงปฏิบัติ
  • การจัดการข้อเสนอแนะ

แนวทางจากบนลงล่าง

ผู้มีอำนาจตัดสินใจต้องการหลักฐานยืนยันคุณค่าของ AI กลยุทธ์ที่มีประสิทธิภาพ:

  • แสดงเรื่องราวความสำเร็จของคู่แข่ง
  • โครงการนำร่องการสาธิต
  • ตัวชี้วัด ROI ที่ชัดเจน
  • แสดงให้เห็นถึงการมีส่วนร่วมของพนักงาน

การจัดการข้อจำกัดด้านงบประมาณ

งบประมาณและโครงสร้างพื้นฐานที่ไม่เพียงพอเป็นอุปสรรคต่อการใช้งาน องค์กรต่างๆ สามารถ:

  • เริ่มต้นด้วยโครงการเล็กๆ
  • ขยายตามผลลัพธ์
  • จัดสรรทรัพยากรอย่างรอบคอบ

ด้านกฎหมายและจริยธรรม

การดำเนินการจะต้องคำนึงถึง:

  • ความเป็นกลางและความเป็นธรรม
  • การปฏิบัติตามกฎระเบียบ
  • กฎเกณฑ์การใช้งานอย่างมีความรับผิดชอบ
  • การติดตามการพัฒนากฎหมาย

การอัปเดตอย่างต่อเนื่อง

องค์กรจะต้อง:

  • ติดตามความคืบหน้าที่เกี่ยวข้อง
  • มีส่วนร่วมในชุมชนอุตสาหกรรม
  • ใช้แหล่งข้อมูลที่น่าเชื่อถือ

มุมมอง

การรับเลี้ยงบุตรบุญธรรมที่มีประสิทธิผลต้องอาศัย:

  • แนวทางเชิงกลยุทธ์
  • การใส่ใจต่อการเปลี่ยนแปลงขององค์กร
  • การจัดแนวให้สอดคล้องกับเป้าหมายและวัฒนธรรมขององค์กร
  • มุ่งเน้นคุณค่าเชิงปฏิบัติ

การเปลี่ยนแปลงที่มีประสิทธิผลจะช่วยปรับปรุงการดำเนินงานและความสามารถของพนักงานผ่านการเลือกที่ยั่งยืนและมีเป้าหมาย

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

เหนือกว่ากระแส: การประยุกต์ใช้จริงของโมเดลภาษาขนาดใหญ่: คำสัญญาและความเป็นจริง

การใช้ LLM ในการคำนวณค่าเฉลี่ยก็เหมือนกับการใช้บาซูก้ายิงแมลงวัน การวิเคราะห์เชิงวิพากษ์กรณีการใช้งานจริง: Instacart, Google, Uber, DoorDash ความจริง? กรณีศึกษาที่น่าสนใจที่สุดยังคงใช้แนวทาง "มนุษย์ร่วมวง" นั่นคือ AI เข้ามาช่วย ไม่ใช่เข้ามาแทนที่ แอปพลิเคชันที่ดีที่สุดคือแอปพลิเคชันที่ปรับแต่งให้เหมาะกับโดเมนเฉพาะ ไม่ใช่โดเมนทั่วไป บริษัทที่ประสบความสำเร็จไม่ใช่บริษัทที่นำ LLM มาใช้อย่างกว้างขวางที่สุด แต่เป็นบริษัทที่นำกลยุทธ์มาใช้อย่างมีกลยุทธ์มากที่สุด
9 พฤศจิกายน 2568

โอกาสสำหรับสตาร์ทอัพด้าน AI ในปี 2025 *อัปเดต*

ในขณะที่ทุกคนกำลังเร่งนำ GPT-5 มาใช้ แต่ก็ยังมีคนทำเงินจากการขายปุ่มอยู่ดี โอกาสที่แท้จริงของ AI ในปี 2025 ไม่ใช่การคิดค้นสิ่งเดิมๆ แต่เป็นการแก้ปัญหาที่แท้จริงโดยไม่ต้องใช้งบประมาณอย่างฟุ่มเฟือย กลุ่มเป้าหมายที่ถูกประเมินค่าต่ำเกินไป เช่น การปรับแต่งเฉพาะบุคคลที่ไม่ทำให้ลูกค้ารู้สึกเหมือนอยู่ใน Black Mirror ผู้ช่วยทางการแพทย์ที่สามารถแยกแยะหวัดออกจากห้องฉุกเฉินได้ ระบบวิเคราะห์ข้อมูลสำหรับธุรกิจขนาดกลางและขนาดย่อมที่เกลียด Excel ความสำเร็จล่ะ? ไม่ใช่สำหรับผู้ที่มี AI ที่ทรงพลังที่สุด แต่สำหรับผู้ที่ทำให้ AI เข้าถึงได้ มีประโยชน์ และยั่งยืน
9 พฤศจิกายน 2568

เหนือกว่าอัลกอริทึม: โมเดล AI ได้รับการฝึกอบรมและปรับปรุงอย่างไร

"ข้อมูลคือกุญแจสำคัญ เปรียบเสมือนจอกศักดิ์สิทธิ์ของ AI เชิงสร้างสรรค์" — ฮิลารี แพคเกอร์ ประธานเจ้าหน้าที่ฝ่ายเทคโนโลยีของ American Express การจัดการข้อมูลคิดเป็น 80% ของความพยายามทั้งหมดในโครงการ AI DeepSeek ได้เปลี่ยนโฉมหน้าของวงการนี้: ต้นทุนการอนุมานอยู่ที่ 1 ใน 30 ของ OpenAI ดาริโอ อโมเดอิ: ต้นทุนลดลง 4 เท่าต่อปี "ผมคาดว่าต้นทุนจะลดลงเหลือศูนย์" — ประธานเจ้าหน้าที่ฝ่ายเทคโนโลยีของ Intuit การผสมผสานระหว่างการกลั่นกรองและ RAG คือเสน่ห์ที่บริษัทส่วนใหญ่ใช้ อนาคตล่ะ? โมเดลเฉพาะเจาะจงและคุ้มค่าจำนวนมากที่ฝังรากลึกอยู่ในข้อมูลองค์กร