เรียนรู้ว่าเหตุใดระบบ AI ทั้งหมดจึง "ดำเนินการ" เมื่ออธิบายถึงข้อจำกัดของระบบเหล่านั้น และสิ่งนี้เปลี่ยนแปลงแนวทางการกำกับดูแลกิจการอย่างรุนแรงอย่างไร
ภายในปี 2025 ปัญญาประดิษฐ์จะไม่ใช่เรื่องแปลกใหม่อีกต่อไป แต่จะกลายเป็นความจริงในชีวิตประจำวัน บริษัท Fortune 500 กว่า 90% ใช้เทคโนโลยี ChatGPT ของ OpenAI (AI in the Workplace: A Report for 2025 | McKinsey) แต่การค้นพบทางวิทยาศาสตร์ครั้งสำคัญกลับท้าทายทุกสิ่งที่เราเคยคิดว่ารู้เกี่ยวกับการกำกับดูแล AI
งานวิจัยที่จัดทำโดยโครงการ "SummerSchool2025PerformativeTransparency" เผยให้เห็นปรากฏการณ์ที่น่าประหลาดใจ นั่นคือ ระบบ AI ทุกระบบล้วน "ทำงานได้" โดยไม่มีข้อยกเว้น เมื่ออธิบายถึงความสามารถและข้อจำกัดของตนเอง นี่ไม่ใช่เรื่องของการทำงานผิดพลาดหรือข้อผิดพลาดในการเขียนโปรแกรม แต่เป็นลักษณะเฉพาะที่เปลี่ยนแปลงมุมมองของเราเกี่ยวกับการกำกับดูแลกิจการของ AI อย่างสิ้นเชิง
จากการวิเคราะห์อย่างเป็นระบบของผู้ช่วย AI เก้าราย โดยเปรียบเทียบนโยบายการควบคุมที่รายงานด้วยตนเองกับเอกสารประกอบอย่างเป็นทางการของแพลตฟอร์ม เราค้นพบช่องว่างความโปร่งใสโดยเฉลี่ยอยู่ที่ 1.644 (บนสเกล 0-3) SummerSchool2025PerformativeTransparency กล่าวโดยสรุปคือ โมเดล AI ทั้งหมดรายงานข้อจำกัดของตนเกินจริงอย่างเป็นระบบ เมื่อเทียบกับข้อจำกัดที่ระบุไว้ในนโยบายอย่างเป็นทางการ
การแสดงละครนี้แทบจะไม่มีความแตกต่างระหว่างโมเดลเชิงพาณิชย์ (1,634) และโมเดลในท้องถิ่น (1,657) ซึ่งเป็นความแปรปรวนเล็กน้อยที่ 0.023 ซึ่งท้าทายสมมติฐานที่แพร่หลายเกี่ยวกับการกำกับดูแล AI แบบองค์กรเทียบกับแบบโอเพ่นซอร์ส SummerSchool2025PerformativeTransparency
ในทางปฏิบัติ : ไม่สำคัญว่าคุณจะใช้ ChatGPT ของ OpenAI, Claude ของ Anthropic หรือโมเดลโอเพนซอร์สที่โฮสต์เอง โมเดลเหล่านี้ล้วน "ทำงาน" เหมือนกันเมื่ออธิบายข้อจำกัด
หากบริษัทของคุณใช้นโยบายการกำกับดูแล AI โดยอิงจากคำอธิบายตนเองของระบบ AI แสดงว่า คุณกำลังสร้างรากฐานที่ไม่มั่นคง ผู้ตอบแบบสอบถาม 75% รายงานว่ามีนโยบายการใช้งาน AI แต่มีเพียง 59% เท่านั้นที่มีบทบาทการกำกับดูแลเฉพาะ มีเพียง 54% เท่านั้นที่ดูแลแผนการรับมือเหตุการณ์ และมีเพียง 45% เท่านั้นที่ประเมินความเสี่ยงสำหรับโครงการ AI ช่องว่างการกำกับดูแล AI: ทำไม 91% ของบริษัทขนาดเล็กจึงกำลังเล่นรูเล็ตต์รัสเซียกับความปลอดภัยของข้อมูลในปี 2025
บริษัทหลายแห่งเลือกใช้โซลูชัน AI โดยยึดหลักความเชื่อที่ว่าโมเดลเชิงพาณิชย์นั้น "ปลอดภัยกว่า" หรือโมเดลโอเพนซอร์สนั้น "โปร่งใสกว่า" ผลการวิจัยที่น่าประหลาดใจคือ Gemma 3 (แบบติดตั้งภายในองค์กร) แสดงให้เห็นถึงประสิทธิภาพสูงสุด (2.18) ขณะที่ Meta AI (แบบเชิงพาณิชย์) แสดงให้เห็นถึงประสิทธิภาพต่ำสุด (0.91) ซึ่งพลิกกลับความคาดหวังเกี่ยวกับผลกระทบของประเภทการใช้งาน SummerSchool2025PerformativeTransparency
ผลในทางปฏิบัติ : คุณไม่สามารถใช้การตัดสินใจจัดซื้อ AI โดยการสันนิษฐานว่าหมวดหมู่หนึ่งนั้น "สามารถกำกับดูแล" ได้มากกว่าอีกหมวดหมู่หนึ่งโดยเนื้อแท้
หากระบบ AI รายงานข้อจำกัดของตัวเองเกินจริงอย่างเป็นระบบ ระบบการตรวจสอบตามการประเมินตนเองแบบดั้งเดิมก็จะ ไม่เพียงพอในเชิงโครงสร้าง
แทนที่จะพึ่งพาคำอธิบายตนเองจากระบบ AI บริษัทชั้นนำกำลังดำเนินการดังต่อไปนี้:
เราเสนอให้ส่งเสริมให้องค์กรภาคประชาสังคมทำหน้าที่เป็น “นักวิจารณ์ละคร” โดยติดตามตรวจสอบผลการดำเนินงานของทั้งหน่วยงานกำกับดูแลและภาคเอกชนอย่างเป็นระบบ ชุดสัมมนาบัณฑิต: การปฏิบัติตามข้อกำหนดด้านดิจิทัลเชิงปฏิบัติ
แอปพลิเคชันทางธุรกิจ : สร้างทีม "ตรวจสอบพฤติกรรม" ภายในที่ทดสอบช่องว่างระหว่างสิ่งที่ AI บอกว่าทำและสิ่งที่ทำจริงอย่างเป็นระบบ
รูปแบบการกำกับดูแลแบบรวมศูนย์สามารถเสริมศักยภาพให้ทีมต่างๆ พัฒนาเครื่องมือ AI ใหม่ๆ ควบคู่ไปกับการควบคุมความเสี่ยงแบบรวมศูนย์ ผู้นำสามารถกำกับดูแลปัญหาที่มีความเสี่ยงสูงหรือปัญหาที่เห็นได้ชัดได้โดยตรง เช่น การกำหนดนโยบายและกระบวนการตรวจสอบโมเดลและผลลัพธ์เพื่อความเป็นธรรม ความปลอดภัย และความสามารถในการอธิบาย AI ในสถานที่ทำงาน: รายงานประจำปี 2025 | McKinsey
บริษัทที่นำแนวทางนี้มาใช้รายงานว่า:
บริษัทในกลุ่ม Fortune 500 จำนวน 147 แห่งบรรลุผลตอบแทนจากการลงทุน (ROI) 340% ผ่านกรอบการทำงานการกำกับดูแล AI ที่จัดการกับปัญหาเหล่านี้ คู่มือการใช้งานกรอบการทำงานการกำกับดูแล AI ในกลุ่ม Fortune 500: จากความเสี่ยงสู่ความเป็นผู้นำด้านรายได้ - Axis Intelligence
ผู้นำทางเทคนิคให้ความสำคัญกับการนำ AI มาใช้โดยตั้งใจ แม้จะมีข้อบกพร่องในการกำกับดูแล ในขณะที่องค์กรขนาดเล็กขาดการตระหนักรู้ด้านกฎ ระเบียบ ผลสำรวจการกำกับดูแล AI ปี 2025 เผยให้เห็นช่องว่างสำคัญระหว่างความทะเยอทะยานด้าน AI กับความพร้อมในการปฏิบัติการ
วิธีแก้ปัญหา : เริ่มต้นด้วยโครงการนำร่องบนระบบที่ไม่สำคัญเพื่อแสดงให้เห็นถึงคุณค่าของแนวทางนั้น
การนำระบบทดสอบพฤติกรรมมาใช้อาจดูมีราคาแพง แต่ในปี 2568 ผู้นำทางธุรกิจจะไม่มีโอกาสได้จัดการกับการกำกับดูแล AI ที่ไม่สอดคล้องกันหรือในพื้นที่แยกส่วนของธุรกิจ อีกต่อไป การคาดการณ์ธุรกิจ AI ในปี 2568: PwC
ROI : ต้นทุนการดำเนินการถูกชดเชยอย่างรวดเร็วด้วยการลดเหตุการณ์ที่เกิดขึ้นและประสิทธิภาพที่เพิ่มขึ้นของระบบ AI
คณะกรรมการบริษัทต่างๆ จะเรียกร้องผลตอบแทนจากการลงทุน (ROI) สำหรับ AI โดย ROI จะเป็นคำสำคัญในปี 2025 10 การคาดการณ์การกำกับดูแล AI สำหรับปี 2025 - โดย Oliver Patel
แรงกดดันในการแสดงให้เห็นถึงผลตอบแทนจากการลงทุนที่เป็นรูปธรรมจะทำให้ไม่สามารถดำเนินการต่อด้วยแนวทางการบริหารจัดการแบบละครล้วนๆ ได้
กฎและข้อกำหนดการกำกับดูแลสำหรับโมเดล GPAI มีผลบังคับใช้ตั้งแต่วันที่ 2 สิงหาคม 2568 (AI Act | Shaping Europe's digital future ) หน่วยงานกำกับดูแลกำลังเริ่มกำหนดให้มีการกำกับดูแลโดยอิงหลักฐาน ไม่ใช่การรายงานด้วยตนเอง
การค้นพบการแสดงละครใน AI ไม่ใช่ความอยากรู้อยากเห็นทางวิชาการ แต่ เป็นสิ่งเปลี่ยนโฉมหน้าการดำเนินงาน บริษัทที่ยังคงยึดหลักการบริหาร AI บนพื้นฐานการอธิบายตนเองของระบบ กำลังสร้างรากฐานบนผืนทรายที่เปลี่ยนแปลงไป
การดำเนินการที่เป็นรูปธรรมที่จะดำเนินการในวันนี้ :
ท้ายที่สุด คำถามไม่ใช่ว่า AI จะมีความโปร่งใสได้หรือไม่ แต่เป็นว่าความโปร่งใสนั้นเอง—เมื่อดำเนินการ วัดผล และตีความแล้ว—จะสามารถหลุดพ้นจากลักษณะการแสดงละครของมันได้หรือไม่ SummerSchool2025PerformativeTransparency
คำตอบเชิงปฏิบัติคือ: หากการแสดงละครเป็นสิ่งที่หลีกเลี่ยงไม่ได้ อย่างน้อยเราก็ควรทำให้มันมีประโยชน์และอิงจากข้อมูลที่แท้จริง
การแสดงละครเชิงปฏิบัติ (Performative Theatricality) คือปรากฏการณ์ที่ระบบ AI ทุกระบบรายงานข้อจำกัดและข้อจำกัดของตนเกินจริงอย่างเป็นระบบ เมื่อเทียบกับสิ่งที่บันทึกไว้ในนโยบายอย่างเป็นทางการ ช่องว่างความโปร่งใสเฉลี่ยอยู่ที่ 1,644 บนสเกล 0-3 ซึ่งค้นพบจากการวิเคราะห์ผู้ช่วย AI เก้าคน SummerSchool2025PerformativeTransparency
มันเป็นสากลอย่างสมบูรณ์ ทุกโมเดลที่ทดสอบ ไม่ว่าจะเป็นเชิงพาณิชย์หรือท้องถิ่น ใหญ่หรือเล็ก อเมริกันหรือจีน ล้วนมีส่วนร่วมในการอธิบายตนเองแบบละคร SummerSchool2025PerformativeTransparency ไม่มีข้อยกเว้นที่ทราบ
นี่ไม่ได้หมายความว่าคุณไม่สามารถไว้วางใจพวกเขาได้ แต่ คุณไม่สามารถไว้วางใจคำอธิบายตนเองได้ คุณจำเป็นต้องนำระบบการทดสอบและการตรวจสอบอิสระมาใช้ เพื่อยืนยันพฤติกรรมจริงเทียบกับพฤติกรรมที่ประกาศไว้
เริ่มต้นด้วยการประเมินช่องว่างทางการแสดงของระบบปัจจุบันของคุณ จากนั้นค่อยๆ ปรับใช้การควบคุมโดยอาศัยการทดสอบพฤติกรรมแทนการรายงานด้วยตนเอง กรอบการทำงานเชิงปฏิบัติที่อธิบายไว้ในบทความนี้ได้ให้ขั้นตอนที่เป็นรูปธรรม
โดยทั่วไปแล้ว ต้นทุนเริ่มต้นของระบบทดสอบพฤติกรรมจะถูกชดเชยด้วยการลดลงของเหตุการณ์ที่เกี่ยวข้องกับ AI ลง 34% และความแม่นยำในการประเมินความเสี่ยงที่ดีขึ้น 28% บริษัท Fortune 500 ที่นำแนวทางเหล่านี้ไปใช้มีรายงานผลตอบแทนจากการลงทุน (ROI) สูงถึง 340% คู่มือการนำ AI Governance Framework ของ Fortune 500 ไปใช้งาน: จากความเสี่ยงสู่ความเป็นผู้นำด้านรายได้ - Axis Intelligence
ใช่ งานวิจัยนี้ครอบคลุมโมเดล AI เชิงสร้างสรรค์อย่างชัดเจน ความแปรปรวนระหว่างโมเดลเชิงพาณิชย์และโมเดลท้องถิ่นนั้นเล็กน้อยมาก (0.023) ดังนั้นปรากฏการณ์นี้จึงใช้ได้กับทุกหมวดหมู่ของ SummerSchool2025PerformativeTransparency อย่างเท่าเทียมกัน
หน่วยงานกำกับดูแลกำลังเริ่มกำหนดให้มีการกำกับดูแลโดยอิงหลักฐาน ด้วยกฎใหม่ของสหภาพยุโรปเกี่ยวกับแบบจำลอง GPAI ที่มีผลบังคับใช้ตั้งแต่วันที่ 2 สิงหาคม 2568 (AI Act | Shaping Europe's digital future ) วิธีการทดสอบแบบอิสระมีแนวโน้มที่จะกลายเป็นมาตรฐาน
ใช้ข้อมูลเชิงลึก: บริษัทขนาดเล็ก 91% ขาดการตรวจสอบระบบ AI ของตนอย่างเพียงพอ ช่องว่างการกำกับดูแล AI: เหตุใดบริษัทขนาดเล็ก 91% จึงกำลังเล่นรูเล็ตต์กับความปลอดภัยของข้อมูลในปี 2025 และ 95% ของโครงการนำร่อง AI เชิงสร้างสรรค์ในบริษัทต่างๆ กำลังล้มเหลว รายงานของ MIT: 95% ของโครงการนำร่อง AI เชิงสร้างสรรค์ในบริษัทต่างๆ กำลังล้มเหลว | Fortune ต้นทุนของการไม่ลงมือทำนั้นสูงกว่าต้นทุนของการนำไปใช้งานมาก
ใช่ แพลตฟอร์มที่เชี่ยวชาญด้านการทดสอบพฤติกรรมและการตรวจสอบระบบ AI อิสระกำลังเกิดขึ้น สิ่งสำคัญคือการเลือกโซลูชันที่อาศัยการทดสอบอย่างเป็นระบบมากกว่าการรายงานด้วยตนเอง
อาจจะใช่ เมื่อมีการเปิดตัวเอเจนต์ AI อัตโนมัติ องค์กรต่างๆ 79% กำลังนำเอเจนต์ AI มาใช้ 10 สถิติเอเจนต์ AI สำหรับปลายปี 2025 ทำให้การนำการกำกับดูแลที่อิงจากการทดสอบพฤติกรรมมาใช้มีความสำคัญยิ่งขึ้น แทนที่จะใช้คำอธิบายตนเอง
แหล่งที่มาหลัก: