อัพเดท

พร้อมให้บริการการสนับสนุนทางโทรศัพท์แล้ว!

ช่องทางการติดต่อใหม่เปิดใช้งานแล้ว หมายเลข: +39 0230356790 พร้อมให้บริการในเวลาทำการ รับเฉพาะสายเรียกเข้าเท่านั้น ไม่รวมสายโทรออกหรือข้อความจากหมายเลขนี้ ทางเลือกอื่น: กรอกแบบฟอร์มติดต่อบนเว็บไซต์ ลองติดต่ออีกครั้ง

พร้อมให้บริการการสนับสนุนทางโทรศัพท์แล้ว!

เรายินดีที่จะแจ้งให้ทราบว่าหมายเลขโทรศัพท์ใหม่ของเราเปิดใช้งานแล้ว
ตอนนี้คุณสามารถติดต่อเราโดยตรงได้หากต้องการความต้องการ คำขอ หรือข้อมูลใดๆ
หมายเลขของเราคือ +39 0230356790


เวลาทำการ: ตามเวลาทำการ หากท่านต้องการใช้บริการ กรุณากรอกแบบฟอร์มติดต่อบนเว็บไซต์ของเรา

หมายเหตุสำคัญ: หมายเลขนี้สำหรับสายเรียกเข้าเท่านั้น เราไม่โทรออกหรือส่งข้อความจากหมายเลขนี้
ทีมเลขานุการของเรามีความเป็นมืออาชีพและความเชี่ยวชาญสูงสุดในการให้บริการคุณ

เรามีความยินดีที่จะนำเสนอช่องทางการสื่อสารใหม่นี้ให้กับคุณ!

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

คู่มือซอฟต์แวร์ Business Intelligence ฉบับสมบูรณ์สำหรับ SMB

SMEs อิตาลี 60% ยอมรับว่ายังมีช่องว่างสำคัญในการฝึกอบรมด้านข้อมูล ขณะที่ 29% ไม่มีแม้แต่ตัวเลขเฉพาะเจาะจง ขณะที่ตลาด BI ของอิตาลีกำลังเติบโตอย่างรวดเร็วจาก 36.79 พันล้านดอลลาร์สหรัฐ เป็น 69.45 พันล้านดอลลาร์สหรัฐ ภายในปี 2034 (อัตราการเติบโตเฉลี่ยต่อปีอยู่ที่ 8.56%) ปัญหาไม่ได้อยู่ที่เทคโนโลยี แต่อยู่ที่วิธีการ SMEs กำลังจมอยู่กับข้อมูลที่กระจัดกระจายอยู่ใน CRM, ERP และสเปรดชีต Excel โดยไม่ได้นำข้อมูลเหล่านั้นมาประกอบการตัดสินใจ ซึ่งใช้ได้กับทั้งผู้ที่เริ่มต้นตั้งแต่ต้นและผู้ที่กำลังมองหาการปรับปรุงประสิทธิภาพ เกณฑ์การคัดเลือกที่สำคัญ ได้แก่ ความสามารถในการใช้งานแบบลากและวางโดยไม่ต้องฝึกอบรมหลายเดือน ความสามารถในการปรับขนาดที่เติบโตไปพร้อมกับคุณ การผสานรวมกับระบบเดิมที่มีอยู่ ต้นทุนการเป็นเจ้าของ (TCO) ที่สมบูรณ์ (การติดตั้ง + การฝึกอบรม + การบำรุงรักษา) เทียบกับราคาใบอนุญาตเพียงอย่างเดียว แผนงานสี่ระยะประกอบด้วยวัตถุประสงค์ SMART ที่วัดผลได้ (ลดอัตราการยกเลิกบริการลง 15% ภายใน 6 เดือน) การจัดทำแผนผังแหล่งข้อมูลที่สะอาด (ข้อมูลขยะเข้า = ข้อมูลขยะออก) การฝึกอบรมทีมเกี่ยวกับวัฒนธรรมข้อมูล และโครงการนำร่องที่มีวงจรป้อนกลับอย่างต่อเนื่อง AI เปลี่ยนแปลงทุกสิ่งทุกอย่าง ตั้งแต่ BI เชิงบรรยาย (สิ่งที่เกิดขึ้น) ไปจนถึงการวิเคราะห์เสริมที่เปิดเผยรูปแบบที่ซ่อนอยู่ การวิเคราะห์เชิงทำนายที่ประเมินความต้องการในอนาคต และการวิเคราะห์เชิงกำหนดที่แนะนำการดำเนินการที่เป็นรูปธรรม Electe กระจายอำนาจนี้ให้กับ SMEs
9 พฤศจิกายน 2568

ระบบระบายความร้อน AI ของ Google DeepMind: ปัญญาประดิษฐ์ปฏิวัติประสิทธิภาพการใช้พลังงานของศูนย์ข้อมูลอย่างไร

Google DeepMind ประหยัดพลังงานระบบทำความเย็นในศูนย์ข้อมูลได้ -40% (แต่ใช้พลังงานรวมเพียง -4% เนื่องจากระบบทำความเย็นคิดเป็น 10% ของพลังงานรวมทั้งหมด) โดยมีความแม่นยำ 99.6% และความผิดพลาด 0.4% บน PUE 1.1 โดยใช้การเรียนรู้เชิงลึก 5 ชั้น โหนด 50 โหนด ตัวแปรอินพุต 19 ตัว จากตัวอย่างการฝึกอบรม 184,435 ตัวอย่าง (ข้อมูล 2 ปี) ได้รับการยืนยันใน 3 สถานที่: สิงคโปร์ (ใช้งานครั้งแรกในปี 2016), Eemshaven, Council Bluffs (ลงทุน 5 พันล้านดอลลาร์) ค่า PUE ทั่วทั้งกลุ่มผลิตภัณฑ์ของ Google อยู่ที่ 1.09 เทียบกับค่าเฉลี่ยของอุตสาหกรรมที่ 1.56-1.58 ระบบควบคุมเชิงคาดการณ์ (Model Predictive Control) คาดการณ์อุณหภูมิ/แรงดันในชั่วโมงถัดไป พร้อมกับจัดการภาระงานด้านไอที สภาพอากาศ และสถานะของอุปกรณ์ไปพร้อมๆ กัน ความปลอดภัยที่รับประกัน: การตรวจสอบสองระดับ ผู้ปฏิบัติงานสามารถปิดใช้งาน AI ได้ตลอดเวลา ข้อจำกัดสำคัญ: ไม่มีการตรวจสอบอิสระจากบริษัทตรวจสอบบัญชี/ห้องปฏิบัติการระดับชาติ แต่ละศูนย์ข้อมูลต้องใช้แบบจำลองที่กำหนดเอง (8 ปี ไม่เคยนำไปใช้ในเชิงพาณิชย์) ระยะเวลาดำเนินการ: 6-18 เดือน ต้องใช้ทีมสหสาขาวิชาชีพ (วิทยาศาสตร์ข้อมูล, ระบบปรับอากาศ (HVAC), การจัดการสิ่งอำนวยความสะดวก) ครอบคลุมพื้นที่นอกเหนือจากศูนย์ข้อมูล: โรงงานอุตสาหกรรม โรงพยาบาล ศูนย์การค้า และสำนักงานต่างๆ ปี 2024-2025: Google เปลี่ยนไปใช้ระบบระบายความร้อนด้วยของเหลวโดยตรงสำหรับ TPU v5p ซึ่งบ่งชี้ถึงข้อจำกัดในทางปฏิบัติของการเพิ่มประสิทธิภาพ AI
9 พฤศจิกายน 2568

แซม อัลท์แมน และ AI Paradox: "ฟองสบู่เพื่อคนอื่น ล้านล้านเพื่อเรา"

"เราอยู่ในฟองสบู่ AI รึเปล่า? ใช่!" — แซม อัลท์แมน ประกาศการลงทุนมูลค่าล้านล้านดอลลาร์ใน OpenAI เขาพูดคำว่า "ฟองสบู่" ซ้ำสามครั้งภายใน 15 วินาที โดยรู้ดีว่ามันจะเป็นอย่างไร แต่จุดพลิกผันคือ เบซอสแยกแยะระหว่างฟองสบู่อุตสาหกรรม (ทิ้งโครงสร้างพื้นฐานที่ยั่งยืน) และฟองสบู่การเงิน (การล่มสลายไร้ค่า) ปัจจุบัน OpenAI มีมูลค่า 5 แสนล้านดอลลาร์สหรัฐ และมีผู้ใช้งาน 800 ล้านคนต่อสัปดาห์ กลยุทธ์ที่แท้จริงคืออะไร? ลดกระแสโฆษณาลงเพื่อหลีกเลี่ยงกฎระเบียบ เสริมสร้างความเป็นผู้นำ ผู้ที่มีพื้นฐานที่มั่นคงจะประสบความสำเร็จ
9 พฤศจิกายน 2568

ทำไมคณิตศาสตร์ถึงยาก (แม้ว่าคุณจะเป็น AI ก็ตาม)

แบบจำลองภาษาไม่สามารถคูณได้ พวกมันจดจำผลลัพธ์ได้เหมือนกับที่เราจดจำค่าพาย แต่ไม่ได้หมายความว่าพวกมันมีความสามารถทางคณิตศาสตร์ ปัญหาอยู่ที่โครงสร้าง พวกมันเรียนรู้ผ่านความคล้ายคลึงทางสถิติ ไม่ใช่ความเข้าใจเชิงอัลกอริทึม แม้แต่ "แบบจำลองการใช้เหตุผล" ใหม่ๆ อย่าง o1 ก็ยังล้มเหลวในงานเล็กๆ น้อยๆ เช่น มันสามารถนับตัว 'r' ในคำว่า "strawberry" ได้อย่างถูกต้องหลังจากประมวลผลเพียงไม่กี่วินาที แต่ล้มเหลวเมื่อต้องเขียนย่อหน้าโดยที่ตัวอักษรตัวที่สองของแต่ละประโยคสะกดเป็นคำ เวอร์ชันพรีเมียมราคา 200 ดอลลาร์ต่อเดือนใช้เวลาสี่นาทีในการแก้ปัญหาสิ่งที่เด็กสามารถทำได้ทันที DeepSeek และ Mistral ยังคงนับตัวอักษรไม่ถูกต้องในปี 2025 วิธีแก้ปัญหาที่กำลังเกิดขึ้น? วิธีการแบบผสมผสาน แบบจำลองที่ชาญฉลาดที่สุดได้ค้นพบว่าเมื่อใดจึงควรเรียกใช้เครื่องคิดเลขจริง แทนที่จะพยายามคำนวณเอง การเปลี่ยนแปลงกระบวนทัศน์: AI ไม่จำเป็นต้องรู้วิธีทำทุกอย่าง แต่สามารถจัดสรรเครื่องมือที่เหมาะสมได้ พาราด็อกซ์สุดท้าย: GPT-4 สามารถอธิบายทฤษฎีลิมิตได้อย่างยอดเยี่ยม แต่กลับไม่สามารถแก้โจทย์การคูณที่เครื่องคิดเลขพกพามักจะแก้ได้อย่างถูกต้อง GPT-4 เหมาะอย่างยิ่งสำหรับการศึกษาคณิตศาสตร์ เพราะสามารถอธิบายด้วยความอดทนอย่างไม่มีที่สิ้นสุด ดัดแปลงตัวอย่าง และวิเคราะห์เหตุผลที่ซับซ้อนได้ หากต้องการการคำนวณที่แม่นยำ เชื่อเครื่องคิดเลขเถอะ ไม่ใช่ปัญญาประดิษฐ์