ราคาขายปลีกของโซลูชัน SaaS หรือ AI เป็นเพียงจุดเริ่มต้นเท่านั้น เมื่อประเมินแพลตฟอร์มเทคโนโลยี สิ่งสำคัญคือต้องพิจารณาต้นทุนเพิ่มเติมที่อาจเกิดขึ้น ซึ่งผู้จำหน่ายหลายรายมักละเว้นจากการนำเสนอ:
การเตรียมและย้ายข้อมูล
ระบบ AI มีค่าเท่ากับข้อมูลที่ประมวลผล จากการวิจัยของ Gartner พบว่าการเตรียมข้อมูลมักคิดเป็น 20-30% ของต้นทุนการนำ AI ไปใช้ทั้งหมด หลายองค์กรประเมินทรัพยากรที่จำเป็นสำหรับ:
ทำความสะอาดและสร้างมาตรฐานข้อมูลทางประวัติศาสตร์
สร้างอนุกรมวิธานข้อมูลที่สอดคล้องกัน
ย้ายข้อมูลจากระบบเดิม
สร้างกรอบการกำกับดูแลข้อมูล
ความท้าทายเฉพาะตัวของการเพิ่มประสิทธิภาพต้นทุน AI
การจัดการต้นทุน AI แตกต่างจากการจัดการค่าใช้จ่ายด้านคลาวด์แบบดั้งเดิม AI ทำงานในระดับที่แตกต่างอย่างสิ้นเชิง โดยขับเคลื่อนด้วย GPU รอบการฝึก และการประมวลผลอนุมานแบบเรียลไทม์ โครงสร้างต้นทุนของ AI มีความซับซ้อน:
GPU มีราคาแพงและโมเดล AI ต้องใช้พลังประมวลผลมหาศาล
การนำ AI มาใช้มักสร้างประสิทธิภาพที่เหนือความคาดหมาย นอกเหนือจากกรณีการใช้งานหลัก ลูกค้าด้านการผลิตรายหนึ่งของเราใช้แพลตฟอร์มของเราเพื่อเพิ่มประสิทธิภาพสินค้าคงคลังในตอนแรก แต่พบว่ากระบวนการจัดซื้อมีการปรับปรุงที่สำคัญซึ่งเป็นข้อดีรอง
การลดหนี้ทางเทคนิค
โซลูชัน SaaS ที่ขับเคลื่อนด้วย AI สมัยใหม่มักจะมาแทนที่ระบบเดิมหลายระบบ ซึ่งช่วยลดต้นทุนการบำรุงรักษาและหนี้ทางเทคนิคที่อาจไม่ปรากฏในการคำนวณ ROI เริ่มต้น
ข่าวกรองการแข่งขัน
ความสามารถในการวิเคราะห์ของแพลตฟอร์ม AI มักให้ข้อมูลเชิงลึกเกี่ยวกับแนวโน้มตลาดและตำแหน่งทางการแข่งขันที่บริษัทต่างๆ เคยจ่ายเงินซื้อจากที่ปรึกษาภายนอก
ข้อสรุปและข้อควรพิจารณาสำหรับผู้จัดการ
FinOps กำลังเปลี่ยนแปลงอย่างรวดเร็ว สิ่งที่เริ่มต้นจากกลยุทธ์การเพิ่มประสิทธิภาพต้นทุนบนคลาวด์ กำลังกลายเป็นรากฐานสำหรับการจัดการค่าใช้จ่ายด้าน SaaS และ AI บริษัทที่ให้ความสำคัญกับ FinOps อย่างจริงจัง โดยเฉพาะอย่างยิ่งในด้านการกำกับดูแลและควบคุมต้นทุนด้าน AI จะมีข้อได้เปรียบในการแข่งขันในการจัดการการเปลี่ยนแปลงทางดิจิทัล
ประเด็นสำคัญสำหรับผู้จัดการ:
FinOps กำลังขยายขอบเขตจากคลาวด์ไปสู่ AI และ SaaS : บริษัทต่างๆ กำลังนำ FinOps มาใช้เพื่อควบคุมต้นทุน AI ที่คาดเดาไม่ได้และการขยายตัวของ SaaS ผู้นำควรผสาน FinOps เข้ากับการวางแผนทางการเงินเพื่อป้องกันการใช้จ่ายดิจิทัลที่ควบคุมไม่ได้
การจัดการต้นทุน AI จำเป็นต้องมีกลยุทธ์ใหม่ : การควบคุมต้นทุนคลาวด์แบบเดิมไม่เหมาะกับ AI ซึ่งต้องอาศัย GPU ราคาแพง การกำหนดราคาแบบโทเค็น และรอบการฝึกอบรมที่ใช้ทรัพยากรจำนวนมาก ผู้บริหารจำเป็นต้องนำการตรวจสอบต้นทุนเฉพาะด้าน AI และการปรับเวิร์กโหลดให้เหมาะสมที่สุดมาใช้เพื่อหลีกเลี่ยงการใช้งบประมาณเกิน