ธุรกิจ

ข้อมูลการฝึกอบรม AI: ธุรกิจมูลค่า 10,000 ล้านดอลลาร์ที่ขับเคลื่อนปัญญาประดิษฐ์

Scale AI มีมูลค่า 29 พันล้านดอลลาร์สหรัฐ และคุณอาจไม่เคยได้ยินมาก่อน มันคืออุตสาหกรรมข้อมูลการฝึกอบรมที่มองไม่เห็นที่ขับเคลื่อน ChatGPT และ Stable Diffusion ซึ่งเป็นตลาดมูลค่า 9.58 พันล้านดอลลาร์สหรัฐที่เติบโต 27.7% ต่อปี ต้นทุนเพิ่มขึ้นถึง 4,300% ตั้งแต่ปี 2020 (Gemini Ultra: 192 ล้านดอลลาร์สหรัฐ) แต่ภายในปี 2028 จะไม่มีข้อความมนุษย์ที่เผยแพร่สู่สาธารณะอีกต่อไป ในขณะเดียวกัน พบคดีความละเมิดลิขสิทธิ์และหนังสือเดินทางหลายล้านเล่มในชุดข้อมูล สำหรับบริษัท: คุณสามารถเริ่มต้นใช้งานได้ฟรีด้วย Hugging Face และ Google Colab

อุตสาหกรรมที่มองไม่เห็นที่ทำให้ ChatGPT, Stable Diffusion และระบบ AI สมัยใหม่อื่นๆ เป็นไปได้

ความลับที่ AI เก็บรักษาไว้เป็นอย่างดี

เมื่อคุณใช้ ChatGPT เพื่อเขียนอีเมลหรือสร้างภาพด้วย Midjourney คุณแทบจะไม่คิดถึง "ความมหัศจรรย์" เบื้องหลัง AI เลย ทว่าเบื้องหลังทุกการตอบสนองอันชาญฉลาดและทุกภาพที่ถูกสร้างขึ้น กลับมีอุตสาหกรรมมูลค่าหลายพันล้านดอลลาร์ที่น้อยคนนักจะพูดถึง นั่นคือ ตลาดข้อมูลการฝึกอบรม AI

ภาคส่วนนี้ ซึ่ง MarketsandMarkets คาดการณ์ว่าจะมีมูลค่าสูงถึง 9.58 พันล้าน ดอลลาร์สหรัฐภายในปี 2572 ด้วยอัตราการเติบโตต่อปีที่ 27.7% ถือเป็นกลไกขับเคลื่อนที่แท้จริงของปัญญาประดิษฐ์สมัยใหม่ แต่ธุรกิจที่แฝงอยู่นี้ทำงานอย่างไรกันแน่?

ระบบนิเวศที่มองไม่เห็นที่เคลื่อนย้ายเงินนับพันล้าน

ยักษ์ใหญ่แห่งวงการพาณิชย์

โลกของข้อมูลการฝึกอบรม AI ถูกครอบงำโดยบริษัทไม่กี่แห่งที่คนส่วนใหญ่ไม่เคยได้ยินชื่อ:

Scale AI บริษัท ที่ใหญ่ที่สุด ในอุตสาหกรรมด้วย ส่วนแบ่งตลาด 28% มีมูลค่าสูงถึง 2.9 หมื่นล้านดอลลาร์ สหรัฐฯ หลังจากการลงทุนของ Meta ลูกค้าองค์กรของพวกเขาจ่ายเงิน ระหว่าง 100,000 ถึงหลายล้านดอลลาร์ สหรัฐฯ ต่อปีสำหรับข้อมูลคุณภาพสูง

Appen ซึ่งตั้งอยู่ในประเทศออสเตรเลีย ดำเนินงาน เครือข่ายผู้เชี่ยวชาญทั่วโลกกว่า 1 ล้านคน ใน 170 ประเทศ ซึ่งทำหน้าที่ติดป้ายกำกับและดูแลข้อมูลสำหรับ AI ด้วยตนเอง บริษัทต่างๆ เช่น Airbnb, John Deere และ Procter & Gamble ใช้บริการของพวกเขาเพื่อ "ฝึกอบรม" โมเดล AI ของพวกเขา

โลกโอเพ่นซอร์ส

ในเวลาเดียวกัน ยังมีระบบนิเวศโอเพนซอร์สที่นำโดยองค์กรต่างๆ เช่น LAION (Large-scale Artificial Intelligence Open Network) ซึ่งเป็นองค์กรไม่แสวงหากำไรของเยอรมนีที่สร้าง LAION-5B ซึ่งเป็นชุดข้อมูลที่มี คู่ภาพ-ข้อความจำนวน 5.85 พันล้านคู่ ที่ทำให้ Stable Diffusion เป็นไปได้

Common Crawl เผยแพร่ ข้อมูลเว็บดิบขนาดหลายเทราไบต์ ทุกเดือน ซึ่งใช้ในการฝึกอบรม GPT-3, LLaMA และโมเดลภาษาอื่นๆ อีกมากมาย

ต้นทุนที่ซ่อนอยู่ของปัญญาประดิษฐ์

สิ่งที่สาธารณชนไม่ทราบคือค่าใช้จ่ายในการฝึกอบรมโมเดล AI สมัยใหม่นั้นแพงมากเพียงใด จากข้อมูลของ Epoch AI พบว่าต้นทุนเพิ่มขึ้น 2-3 เท่าต่อปีในช่วงแปดปีที่ผ่านมา

ตัวอย่างต้นทุนที่แท้จริง:

สถิติที่น่าประหลาดใจที่สุด? จากข้อมูลของ AltIndex.com พบว่าต้นทุนการฝึกอบรม AI เพิ่มขึ้น 4,300% ตั้งแต่ปี 2020

ความท้าทายด้านจริยธรรมและกฎหมายของภาคส่วน

คำถามเรื่องลิขสิทธิ์

หนึ่งในประเด็นที่ถกเถียงกันมากที่สุดคือการใช้เนื้อหาที่มีลิขสิทธิ์ ในเดือนกุมภาพันธ์ พ.ศ. 2568 ศาลรัฐเดลาแวร์ได้ตัดสินในคดี Thomson Reuters v. ROSS Intelligence ว่าการฝึกอบรม AI สามารถถือเป็นการละเมิดลิขสิทธิ์โดยตรงได้ โดยปฏิเสธข้อต่อสู้ในประเด็น "การใช้งานโดยชอบธรรม"

สำนักงานลิขสิทธิ์ของสหรัฐฯ ได้เผยแพร่รายงาน 108 หน้าที่สรุปว่าการใช้งานบางประเภทไม่สามารถปกป้องได้ว่าเป็นการใช้งานโดยชอบด้วยกฎหมาย ซึ่งเปิดโอกาสให้บริษัท AI ต้องจ่ายค่าธรรมเนียมใบอนุญาตจำนวนมหาศาล

ความเป็นส่วนตัวและข้อมูลส่วนบุคคล

การตรวจสอบโดย MIT Technology Review เปิดเผยว่า DataComp CommonPool ซึ่งเป็นหนึ่งในชุดข้อมูลที่ใช้กันอย่างแพร่หลายที่สุด มี รูปภาพหนังสือเดินทาง บัตรเครดิต และสูติบัตรหลายล้านรูป ด้วยยอดดาวน์โหลดมากกว่า 2 ล้านครั้งในช่วงสองปีที่ผ่านมา เรื่องนี้จึงก่อให้เกิดข้อกังวลด้านความเป็นส่วนตัวอย่างมาก

อนาคต: ความขาดแคลนและนวัตกรรม

ปัญหา "ข้อมูลสูงสุด"

ผู้เชี่ยวชาญคาดการณ์ว่าภายใน ปี 2028 ข้อความสาธารณะส่วนใหญ่ที่มนุษย์สร้างขึ้นซึ่งมีอยู่บนอินเทอร์เน็ตจะถูกนำไปใช้ สถานการณ์ "ข้อมูลสูงสุด" นี้กำลังผลักดันให้บริษัทต่างๆ มุ่งสู่โซลูชันที่เป็นนวัตกรรม:

  • ข้อมูลสังเคราะห์ : การสร้างข้อมูลการฝึกอบรมแบบเทียม
  • ข้อตกลงการอนุญาตสิทธิ์ : ความร่วมมือเชิงกลยุทธ์ เช่น ความร่วมมือระหว่าง OpenAI และ Financial Times
  • ข้อมูลหลายโหมด : การรวมข้อความ รูปภาพ เสียง และวิดีโอ

กฎระเบียบใหม่กำลังจะมาเร็วๆ นี้

California AI Transparency Act จะกำหนดให้บริษัทต่างๆ เปิดเผยชุดข้อมูลที่ใช้ในการฝึกอบรม ในขณะที่สหภาพยุโรปกำลังดำเนินการตามข้อกำหนดที่คล้ายคลึงกันใน AI Act

โอกาสสำหรับบริษัทอิตาลี

สำหรับบริษัทต่างๆ ที่ต้องการพัฒนาโซลูชัน AI การทำความเข้าใจระบบนิเวศนี้ถือเป็นสิ่งสำคัญ:

ตัวเลือกที่เป็นมิตรกับงบประมาณ:

โซลูชั่นสำหรับองค์กร:

  • ปรับขนาด AI และ Appen สำหรับโครงการที่มีความสำคัญต่อภารกิจ
  • บริการเฉพาะทาง : เช่น Nexdata สำหรับ NLP หรือ FileMarket AI สำหรับข้อมูลเสียง

บทสรุป

ตลาดข้อมูลการฝึกอบรม AI มีมูลค่า 9.58 พันล้านดอลลาร์สหรัฐ และเติบโตในอัตรา 27.7% ต่อปี อุตสาหกรรมที่มองไม่เห็นนี้ไม่เพียงแต่เป็นเครื่องยนต์ขับเคลื่อน AI ยุคใหม่เท่านั้น แต่ยังเป็นหนึ่งในความท้าทายด้านจริยธรรมและกฎหมายที่ยิ่งใหญ่ที่สุดในยุคสมัยของเราอีกด้วย

ในบทความถัดไป เราจะมาสำรวจว่าบริษัทต่างๆ สามารถเข้าสู่โลกนี้ได้อย่างไร พร้อมคำแนะนำปฏิบัติสำหรับการเริ่มต้นพัฒนาโซลูชัน AI โดยใช้ชุดข้อมูลและเครื่องมือที่มีอยู่ในปัจจุบัน

สำหรับผู้ที่ต้องการเจาะลึกในทันที เราได้จัดทำคู่มือโดยละเอียดพร้อมแผนงานการใช้งาน ค่าใช้จ่ายเฉพาะ และชุดเครื่องมือที่สมบูรณ์ ซึ่งดาวน์โหลดได้ฟรีโดยการลงทะเบียน newsletter -

ลิงค์ที่เป็นประโยชน์เพื่อเริ่มต้นได้ทันที:

  • สภาพแวดล้อมการพัฒนา : Google Colab (ฟรีพร้อม GPU)
  • ชุดข้อมูลโอเพนซอร์ส : ชุดข้อมูล Hugging Face
  • เครื่องมือคำอธิบายประกอบ : Label Studio (ฟรี)
  • การใช้งานอย่างรวดเร็ว : Gradio + HF Spaces
  • หลักสูตรปฏิบัติจริง : Fast.ai (ฟรี ปฏิบัติจริง)

แหล่งข้อมูลทางเทคนิค:

อย่ารอ "การปฏิวัติ AI" จงสร้างสรรค์มันขึ้นมา อีกหนึ่งเดือนนับจากนี้ คุณอาจมีโมเดลที่ใช้งานได้จริงตัวแรก ในขณะที่คนอื่น ๆ ยังคงวางแผนอยู่

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

แนวโน้ม AI ปี 2025: 6 โซลูชันเชิงกลยุทธ์เพื่อการนำ AI ไปใช้อย่างราบรื่น

87% ของบริษัทต่างยอมรับว่า AI เป็นสิ่งจำเป็นในการแข่งขัน แต่หลายบริษัทกลับล้มเหลวในการผสานรวมเข้าด้วยกัน ปัญหาไม่ได้อยู่ที่เทคโนโลยี แต่อยู่ที่วิธีการ ผู้บริหาร 73% ระบุว่าความโปร่งใส (Explainable AI) เป็นสิ่งสำคัญยิ่งต่อการยอมรับของผู้มีส่วนได้ส่วนเสีย ขณะที่การนำ AI ไปใช้อย่างประสบความสำเร็จนั้นเป็นไปตามกลยุทธ์ "เริ่มต้นเล็ก คิดใหญ่" นั่นคือ โครงการนำร่องที่มีมูลค่าสูงที่ตรงเป้าหมาย มากกว่าการเปลี่ยนแปลงทางธุรกิจอย่างเต็มรูปแบบ กรณีศึกษาในโลกแห่งความเป็นจริง: บริษัทผู้ผลิตนำ AI มาใช้ในการบำรุงรักษาเชิงคาดการณ์ในสายการผลิตเดียว ส่งผลให้เวลาหยุดทำงานลดลง 67% ภายใน 60 วัน กระตุ้นให้เกิดการนำ AI ไปใช้ทั่วทั้งองค์กร แนวปฏิบัติที่ดีที่สุดที่ผ่านการตรวจสอบแล้ว: ให้ความสำคัญกับการผสานรวม API/มิดเดิลแวร์ มากกว่าการเปลี่ยนใหม่ทั้งหมด เพื่อลดขั้นตอนการเรียนรู้ การจัดสรรทรัพยากร 30% ให้กับการจัดการการเปลี่ยนแปลงด้วยการฝึกอบรมเฉพาะบทบาท ช่วยเพิ่มความเร็วในการนำ AI ไปใช้ 40% และความพึงพอใจของผู้ใช้เพิ่มขึ้น 65% การนำ AI ไปใช้งานแบบคู่ขนานเพื่อตรวจสอบผลลัพธ์ของ AI เทียบกับวิธีการที่มีอยู่เดิม การลดประสิทธิภาพลงอย่างค่อยเป็นค่อยไปด้วยระบบสำรอง วงจรการตรวจสอบรายสัปดาห์ในช่วง 90 วันแรก โดยติดตามประสิทธิภาพทางเทคนิค ผลกระทบทางธุรกิจ อัตราการนำไปใช้ และผลตอบแทนจากการลงทุน (ROI) ความสำเร็จต้องอาศัยการสร้างสมดุลระหว่างปัจจัยทางเทคนิคและปัจจัยมนุษย์ ได้แก่ ผู้นำด้าน AI ภายในองค์กร การมุ่งเน้นประโยชน์ที่นำไปใช้ได้จริง และความยืดหยุ่นเชิงวิวัฒนาการ
9 พฤศจิกายน 2568

กลยุทธ์แห่งชัยชนะสำหรับการนำ AI ไปใช้: แผน 90 วัน

87% ของทีมสนับสนุนพบว่าลูกค้ามีความคาดหวังที่สูงขึ้น โดย 68% เชื่อว่าเป็นเพราะ AI 90 วันแรกมีความสำคัญอย่างยิ่งในการหลีกเลี่ยงภาวะชะงักงันจากการวิเคราะห์และเริ่มเห็นผลลัพธ์ที่เป็นรูปธรรม แผนสามระยะนี้ครอบคลุมทุกอย่าง ตั้งแต่การจัดวางกลยุทธ์ ไปจนถึงการนำร่องการใช้งานและการขยายธุรกิจที่วัดผลได้ การหลีกเลี่ยงข้อผิดพลาดทั่วไป และการติดตามตัวชี้วัดสำคัญๆ เช่น ประสิทธิภาพและผลกระทบต่อรายได้ ด้วยการสนับสนุนที่ทุ่มเทและการฝึกอบรมอย่างต่อเนื่อง คุณจะเปลี่ยนความสำเร็จเบื้องต้นให้กลายเป็นวัฒนธรรมองค์กรที่เน้น AI
9 พฤศจิกายน 2568

นักพัฒนาและ AI ในเว็บไซต์: ความท้าทาย เครื่องมือ และแนวทางปฏิบัติที่ดีที่สุด: มุมมองระดับนานาชาติ

อิตาลียังคงติดอยู่ที่อัตราการนำ AI มาใช้เพียง 8.2% (เทียบกับค่าเฉลี่ยของสหภาพยุโรปที่ 13.5%) ขณะที่ทั่วโลกมีบริษัทถึง 40% ที่ใช้ AI ในการปฏิบัติงานอยู่แล้ว และตัวเลขเหล่านี้แสดงให้เห็นว่าช่องว่างนี้ร้ายแรงเพียงใด: แชทบอทของ Amtrak สร้างผลตอบแทนจากการลงทุน (ROI) ได้ถึง 800%, GrandStay ประหยัดได้ 2.1 ล้านดอลลาร์สหรัฐต่อปีจากการจัดการคำขออัตโนมัติ 72% และ Telenor เพิ่มรายได้ 15% รายงานฉบับนี้สำรวจการนำ AI ไปใช้บนเว็บไซต์ด้วยกรณีศึกษาเชิงปฏิบัติ (เช่น Lutech Brain สำหรับการประมูล, Netflix สำหรับการแนะนำ, L'Oréal Beauty Gifter ที่มีการมีส่วนร่วม 27 เท่าเมื่อเทียบกับอีเมล) และจัดการกับความท้าทายทางเทคนิคในโลกแห่งความเป็นจริง ได้แก่ คุณภาพข้อมูล อคติทางอัลกอริทึม การผสานรวมกับระบบเดิม และการประมวลผลแบบเรียลไทม์ ตั้งแต่โซลูชันต่างๆ เช่น การประมวลผลแบบเอจเพื่อลดเวลาแฝง สถาปัตยกรรมโมดูลาร์ กลยุทธ์ต่อต้านอคติ ไปจนถึงปัญหาทางจริยธรรม (ความเป็นส่วนตัว ฟองกรอง การเข้าถึงสำหรับผู้ใช้ที่มีความทุพพลภาพ) ไปจนถึงกรณีของรัฐบาล (เฮลซิงกิที่มีการแปล AI หลายภาษา) ค้นพบว่านักพัฒนาเว็บกำลังเปลี่ยนผ่านจากนักเขียนโค้ดไปเป็นนักวางกลยุทธ์ประสบการณ์ผู้ใช้ได้อย่างไร และเหตุใดผู้ที่นำทางวิวัฒนาการนี้ในปัจจุบันจะครอบงำเว็บในวันพรุ่งนี้
9 พฤศจิกายน 2568

ระบบสนับสนุนการตัดสินใจด้วย AI: การเพิ่มขึ้นของ "ที่ปรึกษา" ในความเป็นผู้นำขององค์กร

77% ของบริษัทใช้ AI แต่มีเพียง 1% เท่านั้นที่มีการใช้งานที่ "สมบูรณ์แบบ" ปัญหาไม่ได้อยู่ที่เทคโนโลยี แต่อยู่ที่แนวทาง: ระบบอัตโนมัติทั้งหมดเทียบกับการทำงานร่วมกันอย่างชาญฉลาด Goldman Sachs ใช้ที่ปรึกษา AI กับพนักงาน 10,000 คน เพิ่มประสิทธิภาพในการเข้าถึงข้อมูลได้ 30% และการขายแบบ cross-selling เพิ่มขึ้น 12% โดยยังคงรักษาการตัดสินใจของมนุษย์ไว้ Kaiser Permanente ป้องกันการเสียชีวิตได้ 500 รายต่อปีด้วยการวิเคราะห์ข้อมูล 100 รายการต่อชั่วโมงล่วงหน้า 12 ชั่วโมง แต่ปล่อยให้แพทย์เป็นผู้วินิจฉัย โมเดลที่ปรึกษาช่วยแก้ปัญหาช่องว่างความไว้วางใจ (มีเพียง 44% ที่ให้ความไว้วางใจ AI ระดับองค์กร) ผ่านสามเสาหลัก ได้แก่ AI ที่อธิบายได้พร้อมเหตุผลที่โปร่งใส คะแนนความเชื่อมั่นที่ปรับเทียบแล้ว และข้อเสนอแนะอย่างต่อเนื่องเพื่อการปรับปรุง ตัวเลข: ผลกระทบ 22.3 ล้านล้านดอลลาร์สหรัฐภายในปี 2030 ผู้ร่วมมือด้าน AI เชิงกลยุทธ์จะได้รับผลตอบแทนจากการลงทุน (ROI) เพิ่มขึ้น 4 เท่าภายในปี 2026 แผนงานสามขั้นตอนที่ใช้งานได้จริง ได้แก่ การประเมินทักษะและการกำกับดูแล โครงการนำร่องพร้อมตัวชี้วัดความน่าเชื่อถือ การขยายขนาดอย่างค่อยเป็นค่อยไปพร้อมการฝึกอบรมอย่างต่อเนื่อง ซึ่งนำไปประยุกต์ใช้กับภาคการเงิน (การประเมินความเสี่ยงภายใต้การกำกับดูแล) สาธารณสุข (การสนับสนุนการวินิจฉัย) และการผลิต (การบำรุงรักษาเชิงคาดการณ์) อนาคตไม่ใช่ AI ที่จะมาแทนที่มนุษย์ แต่เป็นการประสานความร่วมมือระหว่างมนุษย์และเครื่องจักรอย่างมีประสิทธิภาพ