ธุรกิจ

คู่มือผู้บริหารสำหรับการลงทุนด้าน AI: ทำความเข้าใจข้อเสนอคุณค่าในปี 2025

L'AI automatizzerà 300M posti lavoro equivalenti globalmente, 92M eliminati entro 2030 (WEF), 60% lavori paesi alto reddito influenzati—ma saldo netto positivo: 170M nuovi ruoli emergeranno (+78M totale). Lavori più suscettibili: amministrativi 46% attività automatizzabili, back-office, call center, contabilità. Risultati settoriali già misurabili: finanza -40% costi operativi +40% efficienza gestione rischio, sanità -30-50% tempi diagnosi con scoperta farmaci da 5 anni a <1 anno (-60% costi), software -56% tempi sviluppo con +30-60% accelerazione time-to-market, manifattura -80% downtime con +8% profitti annui, marketing +30% conversioni con -30% costi acquisizione clienti. Polarizzazione salariale estrema: avvocati con competenze AI guadagnano +49% vs colleghi tradizionali. Italia caso demografico: gap 5.6M posti lavoro entro 2033, automazione 3.8M diventa necessità vs rischio. Competenze 2025: pensiero analitico, creatività, intelligenza sociale—94% responsabili marketing riporta impatto positivo vendite, 91% aziende con AI assumerà nel 2025. Questione centrale: non se AI sostituirà umani ma quali umani si adatteranno vs resisteranno cambiamento.

ในขณะที่แนวโน้มการลงทุนด้าน AI ยังคงพัฒนาอย่างต่อเนื่องในปี 2568 ผู้บริหารต้องเผชิญกับแรงกดดันที่เพิ่มขึ้นในการตัดสินใจเชิงกลยุทธ์เกี่ยวกับการนำ AI มาใช้ ด้วยการนำเครื่องมือ AI มาใช้อย่างรวดเร็วโดยบริษัทต่างๆ โดย 22% นำไปใช้อย่างกว้างขวาง และ 33% ใช้งานในระดับจำกัด ความเข้าใจในการประเมินและนำ โซลูชัน AI มาใช้จึงกลายเป็นสิ่งสำคัญอย่างยิ่งต่อการรักษา ความได้เปรียบ ในการแข่งขัน ในหนังสือ " The Executive Guide to Artificial Intelligence " ของ Andrew Burgess ผู้เขียนได้จัดทำคู่มือฉบับสมบูรณ์สำหรับผู้บริหารธุรกิจที่ต้องการทำความเข้าใจและนำโซลูชัน AI มาใช้ในองค์กรของตน

หนังสือเล่มนี้ตีพิมพ์ในปี 2017 โดยสำนักพิมพ์ Springer International Publishing และให้ภาพรวมเชิงปฏิบัติเกี่ยวกับวิธีที่บริษัทต่างๆ สามารถใช้ประโยชน์จากปัญญาประดิษฐ์ได้ มีอะไรเปลี่ยนแปลงไปบ้างในปัจจุบัน?

แนวโน้มการลงทุนด้าน AI ปัจจุบันปี 2025

ภูมิทัศน์ของ AI กำลังเติบโตอย่างไม่เคยปรากฏมาก่อน โดยองค์กรต่างๆ ลงทุนเพิ่มมากขึ้นเพื่อรักษาความสามารถในการแข่งขัน

พื้นฐาน:

เบอร์เจสส์เน้นย้ำถึงความสำคัญของการเริ่มต้นโดยการกำหนดวัตถุประสงค์ที่ชัดเจนและสอดคล้องกับกลยุทธ์ของบริษัท ซึ่งเป็นหลักการที่ยังคงใช้ได้ในปัจจุบัน ในหนังสือเล่มนี้ เขาได้ระบุความสามารถหลัก 8 ประการของ AI:

  1. การจดจำภาพ
  2. การจดจำเสียง
  3. การค้นหาและการดึงข้อมูล
  4. การจัดกลุ่ม
  5. ความเข้าใจภาษาธรรมชาติ
  6. การเพิ่มประสิทธิภาพ
  7. การทำนาย
  8. ความเข้าใจ (วันนี้)

วิวัฒนาการจากปี 2018 ถึงปี 2025:

นับตั้งแต่หนังสือเล่มนี้ถูกเขียนขึ้น AI ได้ก้าวจากเทคโนโลยีที่เพิ่งเกิดใหม่ไปสู่เทคโนโลยีกระแสหลัก ความสามารถในการ "เข้าใจ" ซึ่งเบอร์เจสมองว่าเป็นเรื่องของอนาคต ได้เห็นความก้าวหน้าครั้งสำคัญด้วยการถือกำเนิดของแบบจำลองภาษาขนาดใหญ่ (LLM) และเทคโนโลยี AI เชิงกำเนิด ซึ่งยังไม่ปรากฏให้เห็นในปี 2018

กรอบ กลยุทธ์สำหรับการตัดสินใจลงทุนด้าน AI

คำถามสำคัญสี่ประการ

เมื่อประเมินการลงทุนใน AI จำเป็นต้องมุ่งเน้นไปที่คำถามสำคัญเหล่านี้:

  1. คำจำกัดความปัญหาทางธุรกิจ
  2. ตัวชี้วัดความสำเร็จ
  3. ข้อกำหนดในการดำเนินการ
  4. การประเมินความเสี่ยง

หมายเหตุ: กรอบคำถามสี่ข้อนี้มาจากความรู้ในปัจจุบันและไม่ได้นำเสนออย่างชัดเจนในหนังสือของเบอร์เจส

การสร้างกลยุทธ์ AI ที่มีประสิทธิภาพ

กรอบการทำงานด้านการรับเลี้ยงบุตรบุญธรรม:

เบอร์เกสเสนอกรอบการทำงานโดยละเอียดสำหรับการสร้างกลยุทธ์ AI ซึ่งประกอบด้วย:

  1. การจัดแนวทางให้สอดคล้องกับกลยุทธ์ทางธุรกิจ - ทำความเข้าใจว่า AI สามารถรองรับเป้าหมายทางธุรกิจที่มีอยู่ได้อย่างไร
  2. ทำความเข้าใจความทะเยอทะยานของ AI - กำหนดว่าคุณต้องการ:
    • ปรับปรุงกระบวนการที่มีอยู่
    • การเปลี่ยนแปลงฟังก์ชันทางธุรกิจ
    • สร้างบริการ/ผลิตภัณฑ์ใหม่
  3. การประเมินความสมบูรณ์ของ AI - กำหนดระดับความพร้อมในปัจจุบันขององค์กรบนมาตราส่วน 0 ถึง 5:
    • การประมวลผลด้วยตนเอง (ระดับ 0)
    • ระบบอัตโนมัติไอที แบบดั้งเดิม (ระดับ 1)
    • ระบบอัตโนมัติพื้นฐานแบบแยกส่วน (ระดับ 2)
    • การนำเครื่องมืออัตโนมัติไปใช้งานเชิงกลยุทธ์ (ระดับ 3)
    • การนำเทคโนโลยีอัตโนมัติต่างๆ มาใช้ในเชิงกลยุทธ์ (ระดับ 4)
    • ระบบอัตโนมัติเชิงกลยุทธ์แบบครบวงจร (ระดับ 5)
  4. การสร้างแผนที่ความร้อน AI - ระบุพื้นที่ที่มีโอกาสมากขึ้น
  5. การพัฒนาเคสทางธุรกิจ - การประเมินผลประโยชน์ทั้งทางตรงและทางอ้อม
  6. การจัดการการเปลี่ยนแปลง - การวางแผนว่าองค์กรของคุณจะปรับตัวอย่างไร
  7. การพัฒนาแผนงาน AI - การสร้างแผนระยะกลางถึงระยะยาว

วิวัฒนาการจากปี 2018 ถึงปี 2025:

กรอบงานของ Burgess ยังคงมีความเกี่ยวข้องอย่างน่าประหลาดใจ แต่ในปัจจุบันจำเป็นต้องบูรณาการโดยคำนึงถึงสิ่งต่อไปนี้:

  • จริยธรรมและกฎระเบียบด้าน AI (เช่น พระราชบัญญัติ AI ของสหภาพยุโรป)
  • ความยั่งยืนด้านสิ่งแวดล้อมของ AI
  • กลยุทธ์ AI ที่มีความรับผิดชอบ
  • การบูรณาการกับเทคโนโลยีใหม่ๆ เช่น คอมพิวเตอร์ควอนตัม

การวัดผลตอบแทนจากการลงทุนด้าน AI

ปัจจัยที่กำหนดผลตอบแทนจากการลงทุน:

เบอร์เจสระบุถึงประโยชน์ของ AI หลายประเภท โดยแบ่งเป็นประเภท "ยาก" และ "ง่าย":

ประโยชน์ที่ยาก:

  • การลดต้นทุน
  • หลีกเลี่ยงค่าใช้จ่าย
  • ความพึงพอใจของลูกค้า
  • การปฏิบัติตาม
  • การบรรเทาความเสี่ยง
  • การบรรเทาการสูญเสีย
  • การบรรเทาการสูญเสียรายได้
  • การสร้างรายได้

ผลประโยชน์ที่อ่อนนุ่ม:

  • การเปลี่ยนแปลงทางวัฒนธรรม
  • ความได้เปรียบในการแข่งขัน
  • เอฟเฟกต์ฮาโล
  • การเปิดใช้งานผลประโยชน์อื่น ๆ
  • การเปิดใช้งานการเปลี่ยนแปลงทางดิจิทัล

__wf_reserved_inherit
การวัดผลตอบแทนจากการลงทุนของ AI มีความซับซ้อนมากขึ้น โดยมีกรอบการทำงานเฉพาะสำหรับการประเมินผลกระทบของ AI เชิงสร้างสรรค์ ซึ่งไม่มีอยู่ในตอนที่เบอร์เจสเขียนหนังสือเล่มนี้

แนวทางทางเทคนิคในการนำ AI ไปใช้

ประเภทของโซลูชั่น:

เบอร์เจสนำเสนอแนวทางหลักสามประการในการนำ AI มาใช้:

  1. ซอฟต์แวร์ AI สำเร็จรูป - โซลูชันสำเร็จรูป
  2. แพลตฟอร์ม AI - ขับเคลื่อนโดยบริษัทเทคโนโลยียักษ์ใหญ่
  3. การพัฒนา AI แบบกำหนดเอง - โซลูชันที่ออกแบบเฉพาะ

สำหรับขั้นตอนแรก เขาเสนอให้พิจารณาดังนี้:

  • การพิสูจน์แนวคิด (PoC)
  • ต้นแบบ
  • ผลิตภัณฑ์ที่ใช้งานได้ขั้นต่ำ (MVP)
  • การทดสอบสมมติฐานที่เสี่ยงที่สุด (RAT)
  • นักบิน

สิ่งที่เปลี่ยนแปลง:

ตั้งแต่ปี 2018 เราได้เห็น:

  • การทำให้เครื่องมือ AI เป็นประชาธิปไตย ด้วยโซลูชันแบบไม่ต้องเขียนโค้ดหรือเขียนโค้ดน้อย
  • การปรับปรุงแพลตฟอร์ม AI บนคลาวด์อย่างโดดเด่น
  • การเติบโตของ AI เชิงกำเนิดและโมเดลเช่น GPT, DALL-E เป็นต้น
  • การเพิ่มขึ้นของโซลูชัน AutoML ที่ทำให้ส่วนต่างๆ ของกระบวนการวิทยาศาสตร์ข้อมูลเป็นแบบอัตโนมัติ

การพิจารณาความเสี่ยงและความท้าทาย

ความเสี่ยงของปัญญาประดิษฐ์:

เบอร์เจสอุทิศบทหนึ่งให้กับความเสี่ยงของ AI โดยเน้นย้ำถึง:

  1. คุณภาพข้อมูล
  2. การขาดความโปร่งใส - ลักษณะ "กล่องดำ" ของอัลกอริทึม
  3. อคติที่ไม่ได้ตั้งใจ
  4. ความไร้เดียงสาของ AI - ข้อจำกัดของความเข้าใจเชิงบริบท
  5. การพึ่งพา AI มากเกินไป
  6. การเลือกใช้เทคโนโลยีที่ผิด
  7. การกระทำอันเป็นอันตราย

วิวัฒนาการจากปี 2018 ถึงปี 2025:

ตั้งแต่หนังสือเล่มนี้ถูกเขียนขึ้น:

  • ความกังวลเกี่ยวกับอคติของอัลกอริทึมกลายเป็นประเด็นสำคัญ (อยู่ระหว่างการสืบสวนเพิ่มเติม)
  • ความปลอดภัยของ AI กลายเป็นสิ่งสำคัญเมื่อภัยคุกคามเพิ่มมากขึ้น
  • การควบคุม AI กลายเป็นปัจจัยสำคัญ
  • ความเสี่ยงจาก Deepfake และการบิดเบือนข้อมูลด้วย AI เชิงสร้างสรรค์มีมากขึ้น
  • ความกังวลเกี่ยวกับความเป็นส่วนตัวเพิ่มมากขึ้นเนื่องจากมีการใช้ AI แพร่หลายมากขึ้น

การสร้างองค์กร AI ที่มีประสิทธิภาพ

จากหนังสือของเบอร์เจส (2018):

เบอร์เจสเสนอ:

  • การสร้างระบบนิเวศ AI ร่วมกับผู้จำหน่ายและพันธมิตร
  • จัดตั้งศูนย์ความเป็นเลิศ (CoE) ที่มีทีมงานเฉพาะทาง
  • พิจารณาบทบาทเช่น Chief Data Officer (CDO) หรือ Chief Automation Officer (CAO)

วิวัฒนาการจากปี 2018 ถึงปี 2025:

ตั้งแต่นั้นมา:

  • บทบาทของ Chief AI Officer (CAIO) กลายเป็นเรื่องปกติไปแล้ว
  • ปัจจุบัน AI มักถูกรวมเข้าไว้ทั่วทั้งองค์กรแทนที่จะถูกแยกไว้เฉพาะใน CoE
  • การกระจายอำนาจของ AI ทำให้เกิดรูปแบบการดำเนินงานแบบกระจายมากขึ้น
  • ความสำคัญของความรู้ด้าน AI สำหรับพนักงานทุกคนได้รับการเปิดเผย

บทสรุป

จากหนังสือของเบอร์เจส (2018):

เบอร์เจสสรุปด้วยความสำคัญของ:

  • อย่าเชื่อคำโฆษณาเกินจริง แต่ให้มุ่งเน้นไปที่ปัญหาทางธุรกิจที่แท้จริง
  • เริ่มต้นการเดินทาง AI ของคุณโดยเร็วที่สุด
  • สร้างอนาคตให้กับธุรกิจของคุณด้วยการทำความเข้าใจ AI
  • การใช้แนวทางที่สมดุลระหว่างความมองโลกในแง่ดีและความสมจริง

วิวัฒนาการจากปี 2018 ถึงปี 2025:

คำแนะนำของเบอร์เจสที่ว่า "อย่าเชื่อกระแส" ยังคงมีความสำคัญอย่างยิ่งในปี 2025 โดยเฉพาะอย่างยิ่งเมื่อกระแส AI เชิงสร้างสรรค์กำลังมาแรง อย่างไรก็ตาม ความเร็วในการนำ AI มาใช้นั้นยิ่งมีความสำคัญมากขึ้น และบริษัทที่ยังไม่ได้เริ่มต้นเส้นทาง AI ของตนเองกำลังเสียเปรียบอย่างมากเมื่อเทียบกับบริษัทที่ทำตามคำแนะนำของเบอร์เจสที่ให้เริ่มต้นตั้งแต่เนิ่นๆ (ในปี 2018!)

ภูมิทัศน์ของ AI ในปี 2025 มีความซับซ้อนมากขึ้น มีความสมบูรณ์มากขึ้น และบูรณาการเข้ากับกลยุทธ์ทางธุรกิจมากกว่าที่ใครจะคาดการณ์ได้ในปี 2018 แต่หลักการสำคัญของการจัดแนวกลยุทธ์ การสร้างมูลค่า และการจัดการความเสี่ยงที่เบอร์เจสสรุปไว้ยังคงมีความสมเหตุสมผลอย่างน่าประหลาดใจ

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

มนุษย์ + เครื่องจักร: สร้างทีมที่ประสบความสำเร็จด้วยเวิร์กโฟลว์ที่ขับเคลื่อนด้วย AI

จะเป็นอย่างไรหากอนาคตของการทำงานไม่ใช่ "มนุษย์ปะทะเครื่องจักร" แต่เป็นความร่วมมือเชิงกลยุทธ์ องค์กรที่ประสบความสำเร็จไม่ได้เลือกระหว่างบุคลากรที่มีความสามารถกับปัญญาประดิษฐ์ แต่พวกเขากำลังสร้างระบบนิเวศที่แต่ละฝ่ายส่งเสริมซึ่งกันและกัน ค้นพบโมเดลการทำงานร่วมกัน 5 แบบที่ได้เปลี่ยนแปลงบริษัทหลายร้อยแห่ง ตั้งแต่การคัดกรองไปจนถึงการโค้ช จากการสำรวจและยืนยันตัวตนไปจนถึงการฝึกงาน ประกอบไปด้วยแผนงานเชิงปฏิบัติ กลยุทธ์ในการเอาชนะอุปสรรคทางวัฒนธรรม และตัวชี้วัดที่เป็นรูปธรรมสำหรับการวัดความสำเร็จของทีมมนุษย์และเครื่องจักร
9 พฤศจิกายน 2568

ภาพลวงตาของการใช้เหตุผล: การถกเถียงที่สั่นคลอนโลก AI

Apple ตีพิมพ์บทความสองฉบับที่สร้างความเสียหายอย่างร้ายแรง ได้แก่ "GSM-Symbolic" (ตุลาคม 2024) และ "The Illusion of Thinking" (มิถุนายน 2025) ซึ่งแสดงให้เห็นว่าหลักสูตร LLM ล้มเหลวในการแก้ปัญหาคลาสสิกแบบเล็กๆ น้อยๆ (เช่น Tower of Hanoi, การข้ามแม่น้ำ) อย่างไร โดยระบุว่า "ประสิทธิภาพลดลงเมื่อเปลี่ยนแปลงเฉพาะค่าตัวเลข" ไม่มีความสำเร็จใดๆ เลยใน Tower of Hanoi ที่ซับซ้อน แต่ Alex Lawsen (Open Philanthropy) โต้แย้งด้วยบทความ "The Illusion of the Illusion of Thinking" ซึ่งแสดงให้เห็นถึงระเบียบวิธีที่มีข้อบกพร่อง ความล้มเหลวเกิดจากข้อจำกัดของผลลัพธ์โทเค็น ไม่ใช่การล่มสลายของเหตุผล สคริปต์อัตโนมัติจัดประเภทผลลัพธ์บางส่วนที่ถูกต้องไม่ถูกต้อง และปริศนาบางอย่างไม่สามารถแก้ทางคณิตศาสตร์ได้ ด้วยการทดสอบซ้ำด้วยฟังก์ชันแบบเรียกซ้ำแทนที่จะแสดงรายการการเคลื่อนที่ Claude/Gemini/GPT จึงสามารถไข Tower of Hanoi ที่มี 15 แผ่นได้ แกรี่ มาร์คัส เห็นด้วยกับแนวคิด "การเปลี่ยนแปลงการกระจายสินค้า" ของ Apple แต่บทความเกี่ยวกับจังหวะเวลาก่อนงาน WWDC กลับตั้งคำถามเชิงกลยุทธ์ ผลกระทบทางธุรกิจ: เราควรไว้วางใจ AI ในงานสำคัญๆ มากน้อยเพียงใด วิธีแก้ปัญหา: แนวทางเชิงสัญลักษณ์ประสาทวิทยา — เครือข่ายประสาทเทียมสำหรับการจดจำรูปแบบ + ภาษา ระบบสัญลักษณ์สำหรับตรรกะเชิงรูปนัย ตัวอย่าง: ระบบบัญชี AI เข้าใจว่า "ฉันใช้จ่ายไปกับการเดินทางเท่าไหร่" แต่ SQL/การคำนวณ/การตรวจสอบภาษี = โค้ดแบบกำหนดตายตัว
9 พฤศจิกายน 2568

🤖 Tech Talk: เมื่อ AI พัฒนาภาษาที่เป็นความลับ

แม้ว่า 61% ของผู้คนจะกังวลกับ AI ที่เข้าใจอยู่แล้ว แต่ในเดือนกุมภาพันธ์ 2025 Gibberlink มียอดวิว 15 ล้านครั้ง ด้วยการนำเสนอสิ่งใหม่สุดขั้ว นั่นคือ AI สองระบบที่หยุดพูดภาษาอังกฤษและสื่อสารกันด้วยเสียงแหลมสูงที่ความถี่ 1875-4500 เฮิรตซ์ ซึ่งมนุษย์ไม่สามารถเข้าใจได้ นี่ไม่ใช่นิยายวิทยาศาสตร์ แต่เป็นโปรโตคอล FSK ที่เพิ่มประสิทธิภาพได้ถึง 80% ทำลายมาตรา 13 ของพระราชบัญญัติ AI ของสหภาพยุโรป และสร้างความทึบแสงสองชั้น นั่นคืออัลกอริทึมที่เข้าใจยากซึ่งประสานงานกันในภาษาที่ถอดรหัสไม่ได้ วิทยาศาสตร์แสดงให้เห็นว่าเราสามารถเรียนรู้โปรโตคอลของเครื่องจักรได้ (เช่น รหัสมอร์สที่ความเร็ว 20-40 คำต่อนาที) แต่เราต้องเผชิญกับขีดจำกัดทางชีววิทยาที่ยากจะเอาชนะ: 126 บิต/วินาทีสำหรับมนุษย์ เทียบกับ Mbps+ สำหรับเครื่องจักร สามอาชีพใหม่กำลังเกิดขึ้น ได้แก่ นักวิเคราะห์โปรโตคอล AI, ผู้ตรวจสอบการสื่อสาร AI และนักออกแบบส่วนต่อประสานระหว่างมนุษย์กับ AI ขณะที่ IBM, Google และ Anthropic กำลังพัฒนามาตรฐาน (ACP, A2A, MCP) เพื่อหลีกเลี่ยงปัญหาที่ยากที่สุด การตัดสินใจเกี่ยวกับโปรโตคอลการสื่อสารของ AI ในปัจจุบันจะกำหนดทิศทางของปัญญาประดิษฐ์ในอีกหลายทศวรรษข้างหน้า