การแนะนำ
บริษัทหลายแห่งตกอยู่ในสิ่งที่เราเรียกว่า "กับดักการคาดการณ์" ซึ่งก็คือการลงทุนอย่างหนักในเทคโนโลยี AI เชิงคาดการณ์โดยไม่ตระหนักว่าความสามารถเหล่านี้เป็นเพียงส่วนหนึ่งของมูลค่าที่ AI สามารถนำเสนอต่อการตัดสินใจทางธุรกิจเท่านั้น
ดังที่ได้กล่าวไว้ในบทความล่าสุดใน Communications of the ACM ว่า "ความสามารถในการคาดการณ์ของ AI ไม่ได้แปลว่าจะต้องใช้เหตุผลและการตัดสินใจในสถานการณ์ใหม่ๆ" [1] บทความนี้จะสำรวจความท้าทาย ข้อจำกัด และแนวทางแก้ไขที่เป็นไปได้เพื่อหลีกเลี่ยงปัญหาเหล่านี้
กับดักการทำนายคืออะไร?
กับดักการทำนายเกิดขึ้นเมื่อองค์กร:
- พวกเขาสับสนระหว่างการทำนายกับเป้าหมายสุดท้าย : บริษัทหลายแห่งเป็นเจ้าของโมเดล AI ที่ซับซ้อนซึ่งสร้างการทำนายที่ยังไม่ได้ใช้งานเนื่องจากพวกเขาไม่ได้สร้างโครงสร้างพื้นฐานขององค์กรเพื่อแปลงข้อมูลเชิงลึกเหล่านั้นให้เป็นการดำเนินการที่เป็นรูปธรรม [2]
- พวกเขาล้มเหลวในการเชื่อมช่องว่างระหว่าง "สิ่งที่อาจเกิดขึ้น" และ "สิ่งที่เราควรทำ" : ดังที่เน้นย้ำในบทความ "Beyond Prediction" การนำ AI มาใช้ที่มีประสิทธิผลสูงสุดไม่ได้เพียงแค่คาดการณ์ผลลัพธ์เท่านั้น แต่ยังช่วยกำหนดกรอบการตัดสินใจ ประเมินตัวเลือก และจำลองผลที่อาจเกิดขึ้นจากการเลือกที่แตกต่างกันอีกด้วย [2]
- พวกเขาใช้แบบจำลองเชิงทำนายเพื่อการตัดสินใจ : ดังที่ George Stathakopolous ชี้ให้เห็นใน Ad Age ว่า "ผมมักเห็นนักการตลาดพยายามใช้แบบจำลองเชิงทำนายเพื่อการตัดสินใจ ซึ่งไม่ใช่ความผิดพลาดโดยตรง แต่เป็นวิธีดำเนินธุรกิจแบบเก่าที่ยุ่งยากกว่า" [3]
ข้อจำกัดพื้นฐานของ AI เชิงทำนาย
AI เชิงทำนายมีข้อจำกัดโดยธรรมชาติหลายประการที่อาจขัดขวางคุณค่าการตัดสินใจ:
- การพึ่งพาข้อมูลในอดีต : "ข้อจำกัดสำคัญของการคาดการณ์ด้วย AI เกิดจากการที่วัตถุดิบที่ AI ใช้ในการคาดการณ์คือข้อมูลในอดีต ดังนั้น AI จึงจำเป็นต้องมุ่งเน้นไปที่อดีตเสมอ" [1] ซึ่งทำให้มีความน่าเชื่อถือน้อยลงสำหรับสถานการณ์ที่ไม่เคยเกิดขึ้นมาก่อนหรือสถานการณ์ที่เปลี่ยนแปลงอย่างรวดเร็ว
- ปัญหาความสัมพันธ์เชิงสาเหตุ : ระบบ AI หลายระบบระบุความสัมพันธ์เชิงสาเหตุได้ แต่ไม่สามารถระบุความสัมพันธ์เชิงสาเหตุได้ นี่คือสิ่งที่ผู้เชี่ยวชาญบางคนเรียกว่า "กับดักเชิงสาเหตุ" – ระบบการเรียนรู้ของเครื่องได้รับข้อมูลเชิงลึก "จากความสัมพันธ์เล็กๆ น้อยๆ หลายล้านรายการ" แต่มักไม่สามารถบอกเราได้ว่าคุณลักษณะเฉพาะใดที่ขับเคลื่อนผลลัพธ์ที่เฉพาะเจาะจง [4]
- ความท้าทายด้านการตีความ : โมเดลการเรียนรู้ของเครื่องที่ซับซ้อนมักทำหน้าที่เป็น "กล่องดำ" ทำให้ยากต่อการเข้าใจว่าโมเดลเหล่านี้ได้ผลลัพธ์การทำนายบางอย่างมาได้อย่างไร ดังที่ Qymatix กล่าวไว้ว่า "ข้อเสียคือคุณไม่สามารถระบุได้อย่างรวดเร็วว่าฟีเจอร์ใดที่บอกคุณเกี่ยวกับลูกค้ารายใดรายหนึ่งได้มากที่สุด" [4]
- อคติยืนยันและการจัดแนว : งานวิจัยแสดงให้เห็นว่า AI อาจได้รับผลกระทบจากอคติในการตัดสินใจ ซึ่งรวมถึงแนวโน้มที่จะ "เน้นย้ำกรอบคำถามของผู้ใช้แทนที่จะท้าทายสมมติฐาน" [5] "อคติการจัดแนว" นี้อาจนำไปสู่คำตอบที่ดูเหมือนสมเหตุสมผล แต่แท้จริงแล้วกลับอิงจากการเชื่อมโยงที่ไม่ค่อยมีการสนับสนุน
เหนือกว่าการคาดการณ์: สู่การปรับปรุงการตัดสินใจที่แท้จริง
เพื่อเอาชนะกับดักการคาดการณ์ บริษัทต่างๆ ควรดำเนินการดังนี้:
- เริ่มต้นด้วยการตัดสินใจ ไม่ใช่ข้อมูล : ระบุการตัดสินใจที่สำคัญที่สุด เกิดขึ้นบ่อยที่สุด และยากลำบากที่สุด จากนั้นทำงานย้อนกลับเพื่อพิจารณาว่าความสามารถของ AI ใดบ้างที่สามารถปรับปรุงการตัดสินใจเหล่านั้นได้ [2]
- การออกแบบเพื่อการเพิ่มประสิทธิภาพ ไม่ใช่เพื่อการทำงานอัตโนมัติ : สร้างอินเทอร์เฟซและเวิร์กโฟลว์ที่รวมข้อมูลเชิงลึกของ AI เข้ากับการตัดสินใจของมนุษย์ แทนที่จะพยายามเอามนุษย์ออกจากวงจรการตัดสินใจ [2]
- สร้างวงจรข้อเสนอแนะการตัดสินใจ : ติดตามผลลัพธ์ของการตัดสินใจอย่างเป็นระบบและรายงานข้อมูลนี้เพื่อปรับปรุง AI และปรับปรุงกระบวนการตัดสินใจ [2]
- พัฒนาทักษะการตัดสินใจ : ฝึกอบรมทีมงานไม่เพียงแต่ในด้านทักษะ AI เท่านั้น แต่ยังรวมถึงการทำความเข้าใจอคติในการตัดสินใจ การคิดแบบน่าจะเป็น และการประเมินคุณภาพการตัดสินใจด้วย [2]
- การนำ Decision Intelligence มาใช้ : การนำ AI มาใช้อย่างครบถ้วนมากขึ้นกำลังนำ Decision Intelligence มาใช้ ซึ่งเป็นการผสมผสานระหว่างวิทยาศาสตร์ข้อมูล ทฤษฎีการตัดสินใจ และวิทยาศาสตร์พฤติกรรม เพื่อเสริมการตัดสินใจของมนุษย์ [2]
อนาคต: ความร่วมมือระหว่างมนุษย์และ AI
คุณค่าที่แท้จริงของ AI อยู่ที่ความร่วมมือระหว่างมนุษย์และเครื่องจักร ในความร่วมมือนี้:
- AI ทำหน้าที่ ประมวลผลข้อมูลจำนวนมาก ระบุรูปแบบ วัดความไม่แน่นอน และรักษาความสม่ำเสมอ
- มนุษย์มีส่วนสนับสนุนใน การทำความเข้าใจบริบท การตัดสินใจอย่างมีจริยธรรม การแก้ปัญหาอย่างสร้างสรรค์ และการสื่อสารระหว่างบุคคล
ดังที่ได้กล่าวไว้ในเอกสาร PMC ของ MIT ฉบับล่าสุดว่า "เพื่อทำความเข้าใจเงื่อนไขที่การตัดสินใจโดยใช้ AI เสริมจะนำไปสู่ประสิทธิภาพที่เสริมซึ่งกันและกัน จะเป็นประโยชน์หากแยกแยะสาเหตุสองประการที่แตกต่างกันของความล้มเหลวที่อาจเกิดขึ้นในการบรรลุประสิทธิภาพที่เสริมซึ่งกันและกัน" [6] งานวิจัยระบุว่าเมื่อการคาดการณ์ของมนุษย์และ AI มีความเป็นอิสระเพียงพอ การผสมผสานกันของทั้งสองวิธีสามารถให้ผลลัพธ์ที่ดีกว่าวิธีการใดวิธีการหนึ่งเพียงอย่างเดียว
บทสรุป
เมื่อเราก้าวเข้าสู่ปี 2025 ความได้เปรียบในการแข่งขันของ AI ไม่ได้มาจากการมีอัลกอริทึมที่ดีขึ้นหรือข้อมูลที่มากขึ้น แต่มาจากการผสานรวม AI เข้ากับกระบวนการตัดสินใจทั่วทั้งองค์กรได้อย่างมีประสิทธิภาพมากขึ้น บริษัทที่เชี่ยวชาญการผสานรวมนี้กำลังเห็นถึงการพัฒนาที่วัดผลได้ ไม่เพียงแต่ในด้านตัวชี้วัดการดำเนินงานเท่านั้น แต่ยังรวมถึงความเร็วในการตัดสินใจ คุณภาพการตัดสินใจ และความสอดคล้องของการตัดสินใจด้วย
การหลีกเลี่ยงกับดักการคาดการณ์จำเป็นต้องอาศัยการเปลี่ยนมุมมอง โดยมองว่า AI ไม่ใช่เป็นเพียงเทคโนโลยีการคาดการณ์ แต่เป็นเทคโนโลยีที่ช่วยเพิ่มประสิทธิภาพการตัดสินใจ ดังที่ซูซาน เอเธย์ จาก MIT Sloan กล่าวไว้ว่า "ฉันพยายามช่วยให้ผู้จัดการเข้าใจว่าอะไรที่ทำให้ปัญหาง่ายหรือยากจากมุมมองของ AI เมื่อพิจารณาจาก AI ที่เรามีอยู่ในปัจจุบัน" [7]
องค์กรที่สามารถรับมือกับความซับซ้อนนี้ได้จะเป็นองค์กรที่จะได้รับประโยชน์สูงสุดจาก AI ในปีต่อๆ ไป
แหล่งที่มา
- การสื่อสารของ ACM (เมษายน 2568) - “การคาดการณ์ AI ปรับขนาดตามการตัดสินใจหรือไม่” - https://cacm.acm.org/opinion/does-ai-prediction-scale-to-decision-making/
- บทความ "Beyond Prediction" (เมษายน 2568) - "เหตุใดมูลค่าที่แท้จริงของ AI จึงอยู่ในกระบวนการเพิ่มพูนการตัดสินใจ"
- Ad Age (พฤศจิกายน 2024) - "วิธีการเปลี่ยนจากการคาดการณ์ AI ไปสู่การตัดสินใจเกี่ยวกับ AI อย่างแท้จริง" - https://adage.com/article/digital-marketing-ad-tech-news/how-pivot-ai-predictions-true-ai-decision-making/2589761
- Qymatix (สิงหาคม 2021) - "วิธีหลีกเลี่ยงกับดักความเป็นเหตุเป็นผลของการเรียนรู้ของเครื่องจักรแบบกล่องดำ" - https://qymatix.de/en/causality-trap-machine-learning-black-box/
- การส่งเสริมการเสริมอำนาจ (กุมภาพันธ์ 2568) - "กับดักการตัดสินใจของ AI ขั้นสูงสุด: ความปรารถนาที่จะทำให้พอใจ" - https://enablingempowerment.com/ai-decision-making-alignment-bias/
- PMC (2024) - "สามความท้าทายสำหรับการตัดสินใจโดยใช้ AI" - https://pmc.ncbi.nlm.nih.gov/articles/PMC11373149/
- MIT Sloan Management Review - "อันตรายของการใช้การทำนาย AI กับการตัดสินใจที่ซับซ้อน" - https://sloanreview.mit.edu/article/the-perils-of-applying-ai-prediction-to-complex-decisions/


