Newsletter

ปัญญาประดิษฐ์ในภาคพลังงาน: โซลูชันใหม่สำหรับการผลิตและการจัดจำหน่าย

Siemens Energy: ลดเวลาหยุดทำงานลง 30% GE: ประหยัดได้ 1 พันล้านดอลลาร์ต่อปี Iberdrola: ลดของเสียจากพลังงานหมุนเวียนลง 25% AI กำลังพลิกโฉมการจัดการพลังงาน: การพยากรณ์อากาศเพื่อเพิ่มประสิทธิภาพพลังงานแสงอาทิตย์และพลังงานลม การบำรุงรักษาเชิงคาดการณ์ และโครงข่ายไฟฟ้าอัจฉริยะที่คาดการณ์ปัญหาได้ แต่มีข้อขัดแย้งอยู่อย่างหนึ่ง: ศูนย์ข้อมูล AI ใช้พลังงานหลายร้อยกิโลวัตต์ชั่วโมงต่อการฝึกอบรม ทางออกคืออะไร? วงจรอันดีงาม—AI จัดการพลังงานหมุนเวียนที่ขับเคลื่อนระบบ AI

AI กำลังพลิกโฉมการจัดการพลังงานด้วยการเพิ่มประสิทธิภาพพลังงานหมุนเวียนและโครงข่ายไฟฟ้าอัจฉริยะ อัลกอริทึมช่วยบริษัทไฟฟ้า:

  • ลดการปล่อยก๊าซคาร์บอนไดออกไซด์
  • การปรับปรุงความน่าเชื่อถือของพลังงานหมุนเวียน
  • การคาดการณ์ความต้องการ
  • ป้องกันการหยุดชะงัก
  • เพิ่มประสิทธิภาพ การกระจายสินค้า

ผลกระทบ

  1. การผลิตพลังงาน:

อัลกอริทึมเชิงพยากรณ์ช่วยเพิ่มความน่าเชื่อถือของพลังงานหมุนเวียนด้วยการคาดการณ์สภาพอากาศสำหรับพลังงานแสงอาทิตย์และพลังงานลม การบำรุงรักษาเชิงพยากรณ์ช่วยลดระยะเวลาหยุดทำงานและต้นทุนการดำเนินงานของโรงไฟฟ้า

  1. การใช้พลังงาน:

ผู้ใช้สามารถปรับเปลี่ยนการใช้พลังงานให้อยู่ในช่วงนอกเวลาพีคได้ ซึ่งจะช่วยลดต้นทุนและลดภาระไฟฟ้าในระบบ ระบบบ้านอัจฉริยะจะปรับเทอร์โมสตัท แสงสว่าง และเครื่องใช้ไฟฟ้าต่างๆ โดยอัตโนมัติ

  1. การจัดการเครือข่าย

เทคโนโลยีดิจิทัลสมัยใหม่กำลังปฏิวัติวิธีการจัดการโครงสร้างพื้นฐานด้านพลังงาน โดยเฉพาะอย่างยิ่ง ปัญญา ประดิษฐ์ (AI) กำลังพิสูจน์แล้วว่าเป็นเครื่องมือที่มีคุณค่าสำหรับบริษัทจำหน่ายไฟฟ้า ระบบขั้นสูงเหล่านี้วิเคราะห์ข้อมูลจำนวนมหาศาลอย่างต่อเนื่องจากเซ็นเซอร์ที่กระจายอยู่ทั่วเครือข่าย ตั้งแต่สายส่งไฟฟ้าไปจนถึงสถานีหม้อแปลงไฟฟ้า

ด้วยอัลกอริทึมการเรียนรู้ของเครื่องที่ซับซ้อน ทำให้ปัจจุบันสามารถระบุปัญหาที่อาจเกิดขึ้นได้ก่อนที่จะก่อให้เกิดการหยุดชะงักของบริการ แนวทางการป้องกันนี้ หรือที่เรียกว่าการบำรุงรักษาเชิงคาดการณ์ (Predictive Maintenance) กำลังให้ผลลัพธ์ที่น่าทึ่ง บริษัทหลายแห่งในภาคส่วนนี้รายงานว่าการหยุดชะงักของบริการลดลงอย่างมาก ส่งผลให้คุณภาพบริการที่มอบให้แก่ประชาชนและธุรกิจดีขึ้นอย่างมีนัยสำคัญ

ผลกระทบของการเปลี่ยนแปลงทางเทคโนโลยีนี้ไม่เพียงแต่ช่วยลดความล้มเหลวเท่านั้น ความสามารถในการคาดการณ์และป้องกันปัญหาต่างๆ ช่วยให้บริหารจัดการทรัพยากรได้อย่างมีประสิทธิภาพมากขึ้น วางแผนการแทรกแซงได้ดีขึ้น และท้ายที่สุดคือบริการไฟฟ้าที่เชื่อถือได้และ ยั่งยืน มากขึ้นสำหรับชุมชนโดยรวม

ตัวอย่างผลกระทบ:

  • Siemens Energy: ลดเวลาหยุดทำงาน 30%
  • เจเนอรัลอิเล็กทริก: ประหยัดเงินได้ปีละ 1 พันล้านเหรียญสหรัฐ
  • Iberdrola: ลดการสูญเสียพลังงาน 25% ในพลังงานหมุนเวียน

แอปพลิเคชันที่ผ่านการทดสอบ :

  • เชลล์และบีพี: การเพิ่มประสิทธิภาพการดำเนินงานและการลดการปล่อยมลพิษ
  • Tesla: การจัดเก็บพลังงานและโซลูชันที่สะอาด
  • Duke Energy และ National Grid: การปรับปรุงเครือข่าย

AI ช่วยปรับปรุงการจัดการพลังงานโดยทำให้:

  • มีประสิทธิภาพมากขึ้น
  • น่าเชื่อถือมากขึ้น
  • ยั่งยืนยิ่งขึ้น
  • ถูกกว่า

การพัฒนาเหล่านี้รองรับการเปลี่ยนผ่านไปสู่ระบบพลังงานที่ยั่งยืนมากขึ้นผ่านโซลูชันทางเทคโนโลยีที่ใช้ได้ในภาคสนามแล้ว

บทสรุป

ปัญญาประดิษฐ์กำลังปฏิวัติวงการพลังงาน ด้วยการนำเสนอโซลูชันนวัตกรรมเพื่อเพิ่มประสิทธิภาพการผลิต การจ่าย และการใช้พลังงาน อย่างไรก็ตาม ปัญญาประดิษฐ์เองก็มีผลกระทบต่อพลังงานด้วยเช่นกัน ศูนย์คอมพิวเตอร์ที่จำเป็นสำหรับการฝึกอบรมและรันโมเดล AI จำเป็นต้องใช้พลังงานจำนวนมาก โดยมีการประมาณการว่าการใช้พลังงานอาจสูงถึงหลายร้อยกิโลวัตต์-ชั่วโมงสำหรับการฝึกอบรมโมเดลที่ซับซ้อนเพียงครั้งเดียว

เพื่อให้ได้ประโยชน์สูงสุดจาก AI ในภาคพลังงาน บริษัทต่างๆ กำลังนำแนวทางที่ครอบคลุมมาใช้ ในด้านหนึ่ง พวกเขากำลังใช้สถาปัตยกรรมและฮาร์ดแวร์เฉพาะทางที่มีประสิทธิภาพมากขึ้น ในอีกแง่หนึ่ง พวกเขากำลังขับเคลื่อนศูนย์ข้อมูลด้วยพลังงานหมุนเวียน ซึ่งสร้างวงจรอันดีงามที่ AI ช่วยจัดการแหล่งพลังงานหมุนเวียนได้ดีขึ้น ซึ่งในทางกลับกันก็ช่วยขับเคลื่อนระบบ AI เช่นกัน

นวัตกรรมในด้านประสิทธิภาพการคำนวณและเทคโนโลยีการระบายความร้อนของศูนย์ข้อมูล ควบคู่ไปกับการใช้พลังงานหมุนเวียนหรือพลังงานนิวเคลียร์ในกรณีที่ได้รับอนุญาต จะเป็นสิ่งสำคัญในการทำให้แน่ใจว่า AI จะยังคงเป็นเครื่องมือที่ยั่งยืนสำหรับการเปลี่ยนผ่านด้านพลังงาน

ความสำเร็จในระยะยาวของแนวทางนี้จะขึ้นอยู่กับความสามารถในการสร้างสมดุลระหว่างผลประโยชน์ในการดำเนินงานของระบบกับความยั่งยืนด้านพลังงานของระบบ ซึ่งจะนำไปสู่ อนาคต ที่สะอาดและมีประสิทธิภาพอย่างแท้จริง ผมจะเขียนถึงหัวข้อนี้โดยละเอียดในภายหลัง

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

ไวท์บอร์ดดิจิทัลคืออะไร? เปรียบเทียบอย่างครอบคลุมสำหรับปี 2025

Miro มีผู้ใช้ 90 ล้านคนและมีเทมเพลตให้เลือกใช้ถึง 5,000 แบบ แต่นี่เป็นตัวเลือกที่เหมาะสมสำหรับคุณหรือไม่? ภายในปี 2025 ไวท์บอร์ดสำหรับการทำงานร่วมกันได้พัฒนาเป็นพื้นที่ทำงานเต็มรูปแบบพร้อม AI ในตัว Miro AI เปลี่ยนภาพร่างให้เป็นไดอะแกรม Mural โดดเด่นด้านการอำนวยความสะดวกในการจัดเวิร์กช็อป Lucidspark ผสานรวมกับ Lucidchart ได้อย่างราบรื่น Conceptboard? ตัวเลือกสำหรับยุโรปที่สอดคล้องกับ GDPR และมีบริการโฮสติ้งภายในองค์กร Microsoft Whiteboard ให้บริการฟรีสำหรับผู้ที่อยู่ในระบบนิเวศอยู่แล้ว ตัวเลือกขึ้นอยู่กับความปลอดภัย การผสานรวม และเวิร์กโฟลว์
9 พฤศจิกายน 2568

การบำรุงรักษาเชิงคาดการณ์ในการบิน: ปัญญาประดิษฐ์กำลังปฏิวัติความปลอดภัยในการบินอย่างไร

สายการบินเดลต้า: จากการยกเลิกเที่ยวบิน 5,600 ครั้งต่อปีเนื่องจากความล้มเหลว เหลือเพียง 55.99% ระบบ APEX เปลี่ยนเครื่องบินทุกลำให้เป็นแหล่งข้อมูลอย่างต่อเนื่อง เซ็นเซอร์หลายพันตัวส่งพารามิเตอร์แบบเรียลไทม์ ปัญญาประดิษฐ์ (AI) ระบุรูปแบบที่เกิดขึ้นก่อนเกิดความล้มเหลว เครื่องบินโบอิ้ง 787 สร้างข้อมูล 500 GB ต่อเที่ยวบิน ตลาดเติบโตอย่างรวดเร็ว จาก 1 พันล้านดอลลาร์สหรัฐ (ปี 2024) เป็น 32.5 พันล้านดอลลาร์สหรัฐ (ปี 2033) ผลตอบแทนจากการลงทุน (ROI) โดยทั่วไปภายใน 18-24 เดือน อนาคตของการบิน? คาดการณ์ได้ ชาญฉลาด และปลอดภัยยิ่งขึ้น
9 พฤศจิกายน 2568

ผู้จัดการ 3.0: วิธีเจริญเติบโตในยุค AI

ผลกระทบที่เงียบที่สุดของ AI ไม่ได้อยู่ที่แนวหน้าหรือระดับสูงสุด แต่อยู่ที่ผู้บริหารระดับกลาง ตั้งแต่ "หัวหน้างานฝ่ายบริหาร" ไปจนถึง "ผู้ประสานงานแบบเสริม" ผู้จัดการในปี 2025 จะต้องพัฒนาตนเอง มิเช่นนั้นจะกลายเป็นคนที่ไม่มีความสำคัญอีกต่อไป ทักษะสำคัญ 8 ประการ ตั้งแต่การอำนวยความสะดวกในการทำงานร่วมกันระหว่างมนุษย์และ AI ไปจนถึงภาวะผู้นำที่มีจริยธรรม ขอบเขตถัดไปคืออะไร? "ปัญญาประดิษฐ์แบบกระจายอำนาจ" การทดลองในระยะแรกแสดงให้เห็นถึงผลผลิตที่เพิ่มขึ้น 30-40% คำถามไม่ใช่ว่า AI จะพลิกโฉมการบริหารจัดการหรือไม่ แต่อยู่ที่ว่าคุณพร้อมหรือไม่