AI ช่วยเปลี่ยนแปลงการบำรุงรักษาเครื่องบินจากการตอบสนองเป็นการคาดการณ์ได้อย่างไร ส่งผลให้ประหยัดเงินได้หลายล้านดอลลาร์ และปรับปรุงความปลอดภัยในการบินให้ดีขึ้นอย่างมาก
การบินพาณิชย์กำลังก้าวเข้าสู่ การปฏิวัติ แบบเงียบเชียบอย่างแท้จริง ขณะที่ผู้โดยสารให้ความสำคัญกับความสะดวกสบายและความตรงต่อเวลา เบื้องหลัง ปัญญา ประดิษฐ์ กำลังเขียนกฎเกณฑ์ใหม่ในการซ่อมบำรุงอากาศยาน เปลี่ยนโฉมอุตสาหกรรมที่เน้นการตอบสนองแบบเดิมๆ ให้กลายเป็นระบบนิเวศเชิงคาดการณ์และเชิงรุก
เป็นเวลาหลายทศวรรษที่อุตสาหกรรมการบินดำเนินงาน ตามกรอบ แนวคิดพื้นฐานสองประการ ได้แก่ การบำรุงรักษาเชิงรับ (การซ่อมแซมหลังจากชำรุด) และ การบำรุงรักษาเชิงป้องกัน (การเปลี่ยนชิ้นส่วนตามกำหนดเวลาที่กำหนด) ทั้งสองแนวทางนี้ก่อให้เกิดต้นทุนมหาศาลและความไม่มีประสิทธิภาพของระบบ
การบำรุงรักษาเชิงรับ (Reactive maintenance) ก่อให้เกิดสิ่งที่อุตสาหกรรมเรียกว่า "Aircraft on Ground" (AOG) ซึ่งเป็นสถานการณ์ที่เครื่องบินต้องจอดนิ่งเนื่องจากเกิดความผิดพลาดที่ไม่คาดคิด ความล่าช้าทุกนาทีทำให้สายการบินต้องสูญเสียเงินประมาณ 100 ดอลลาร์ สหรัฐ ตามข้อมูลของสายการบินเพื่ออเมริกา (Airlines for America) โดยสร้างผลกระทบทางเศรษฐกิจโดยรวมมากกว่า 3.4 หมื่นล้านดอลลาร์สหรัฐต่อปี ในสหรัฐอเมริกาเพียงประเทศเดียว
ในทางกลับกัน การบำรุงรักษาเชิงป้องกัน แม้จะรับประกันความปลอดภัย แต่ก็ก่อให้เกิดขยะจำนวนมหาศาลเนื่องจากต้องเปลี่ยนชิ้นส่วนที่ทำงานได้อย่างสมบูรณ์แบบเพียงเพราะว่าหมดชั่วโมงบินตามกำหนดในปฏิทินแล้ว
กรณีตัวอย่างที่ชัดเจนที่สุดของการเปลี่ยนแปลงที่ขับเคลื่อนด้วย AI ในด้านการบำรุงรักษาเครื่องบินมาจาก สายการบิน Delta ซึ่งนำระบบ APEX (Advanced Predictive Engine) มาใช้ ซึ่งให้ผลลัพธ์ที่ดูเหมือนนิยายวิทยาศาสตร์
ข้อมูลของเดลต้าบอกเล่าเรื่องราวที่น่าทึ่ง:
นี่ถือเป็นการเปลี่ยนแปลงครั้งใหญ่ที่สุดครั้งหนึ่งที่เคยมีการบันทึกไว้ในอุตสาหกรรมการบินพาณิชย์ ส่งผลให้บริษัท ประหยัดเงินได้ปีละแปดหลัก
หัวใจสำคัญของการปฏิวัติเดลต้าคือระบบที่เปลี่ยนเครื่องบินทุกลำให้เป็น แหล่งข้อมูลอัจฉริยะอย่างต่อเนื่อง :
เดลต้าได้จัดตั้ง ทีมนักวิเคราะห์เฉพาะทางจำนวน 8 คน ซึ่งคอยตรวจสอบข้อมูลจากเครื่องบินเกือบ 900 ลำตลอด 24 ชั่วโมงทุกวัน ผู้เชี่ยวชาญเหล่านี้สามารถตัดสินใจที่สำคัญได้ เช่น การจัดส่งเครื่องยนต์ทดแทนด้วยรถบรรทุกไปยังจุดหมายปลายทางที่คาดการณ์ว่าจะเกิดปัญหา
ตัวอย่างที่เป็นรูปธรรม: เมื่อเครื่องบินโบอิ้ง 777 ที่บินจากแอตแลนตาไปเซี่ยงไฮ้แสดงสัญญาณของกังหันที่ทำงานหนักเกินไป เดลต้าจึงส่งเครื่องบินไล่ตามไปยังเซี่ยงไฮ้ทันทีพร้อมกับเครื่องยนต์ทดแทน ซึ่งช่วยหลีกเลี่ยงความล่าช้าที่สำคัญและปัญหาความปลอดภัยที่อาจเกิดขึ้นได้
เดลต้าใช้แพลตฟอร์ม GE Digital SmartSignal เพื่อสร้างแผงหน้าจอเดียว ซึ่งเป็นอินเทอร์เฟซแบบรวมที่ตรวจสอบเครื่องยนต์จากผู้ผลิตหลายราย (GE, Pratt & Whitney, Rolls-Royce) แนวทางนี้นำเสนอ:
ความร่วมมือระหว่างเดลต้าและ แอร์บัส สกายไวส์ ถือเป็นต้นแบบของการผสานรวม AI ในอุตสาหกรรม แพลตฟอร์มสกายไวส์รวบรวมและวิเคราะห์พารามิเตอร์การทำงานของเครื่องบินหลายพันตัวเพื่อ:
Southwest ได้นำอัลกอริทึม AI มาใช้เพื่อ:
กลุ่มยุโรปได้พัฒนา ฝาแฝดทางดิจิทัล ซึ่งเป็นสำเนาเสมือนของเครื่องบินและเครื่องยนต์ที่ขับเคลื่อนด้วยข้อมูลสด เพื่อคาดการณ์การสึกหรอของส่วนประกอบและอายุการใช้งานที่เหลือด้วยความแม่นยำที่ไม่เคยมีมาก่อน
แผนก MRO ของ Lufthansa ใช้การเรียนรู้ของเครื่องจักรเพื่อเพิ่มประสิทธิภาพกำหนดการบำรุงรักษาโดยรักษาสมดุลระหว่างความปลอดภัย ต้นทุน และความพร้อมใช้งานของกองยาน
เดลต้าได้บัญญัติศัพท์คำว่า "Digital Life Ribbon" ขึ้นเพื่ออธิบายประวัติ ดิจิทัล อย่างต่อเนื่องของเครื่องบินแต่ละลำ กรอบการทำงานแบบรวมนี้:
อัลกอริทึมที่ใช้ในการบินจะรวมเทคนิคหลายอย่างเข้าด้วยกัน:
เครื่องบินโบอิ้ง 787 ดรีมไลเนอร์สร้าง ข้อมูลระบบเฉลี่ย 500 GB ต่อเที่ยวบิน ความท้าทายไม่ใช่การรวบรวมข้อมูลนี้ แต่เป็นการแปลงข้อมูลให้เป็นข้อมูลเชิงลึกที่นำไปปฏิบัติได้จริงผ่าน:
การนำ AI มาใช้ในการบำรุงรักษาเครื่องบินทำให้เกิด:
นอกเหนือจากการประหยัดทางเศรษฐกิจแล้ว AI ในการบำรุงรักษายังสร้าง:
การนำ AI เชิงทำนายมาใช้ต้องเผชิญกับความท้าทายหลายประการ:
การบูรณาการแบบเก่า : ระบบ AI จะต้องบูรณาการกับโครงสร้างพื้นฐานด้านไอทีที่ได้รับการพัฒนามานานหลายทศวรรษ โดยมักจะใช้สถาปัตยกรรมที่เข้ากันไม่ได้
การรับรองตามกฎระเบียบ : หน่วยงานต่างๆ เช่น FAA และ EASA ทำงานโดยใช้กรอบงานที่ออกแบบมาสำหรับระบบกำหนดแน่นอน ในขณะที่ AI เป็นแบบความน่าจะเป็นและเรียนรู้ด้วยตนเอง
การจัดการการเปลี่ยนแปลง : การเปลี่ยนจากกระบวนการด้วยตนเองแบบเดิมไปเป็นระบบที่ขับเคลื่อนด้วย AI จำเป็นต้องมีการฝึกอบรมอย่างเข้มข้นและการเปลี่ยนแปลงทางวัฒนธรรม
ความเป็นเจ้าของข้อมูล : คำถามว่าใครเป็นเจ้าของและควบคุมข้อมูลการปฏิบัติการยังคงมีความซับซ้อน โดยผู้ผลิตเครื่องบิน สายการบิน และผู้ให้บริการ MRO ต่างอ้างสิทธิ์ข้อมูลแต่ละส่วนที่แตกต่างกัน
อนาคตของการบำรุงรักษาเชิงคาดการณ์ด้วย AI ในอุตสาหกรรมการบินประกอบด้วย:
การบำรุงรักษาเชิงคาดการณ์ที่ขับเคลื่อนด้วย AI ไม่ได้หมายถึงแค่การเพิ่มประสิทธิภาพการปฏิบัติงานเพียงอย่างเดียวเท่านั้น แต่ยังเป็นการ เปลี่ยนแปลงกระบวนทัศน์ ที่กำลังกำหนดแนวคิดใหม่เกี่ยวกับความปลอดภัยและความน่าเชื่อถือในอุตสาหกรรมการบินอีกด้วย
ในขณะที่สายการบินชั้นนำอย่าง Delta, Southwest และ Lufthansa กำลังได้รับผลประโยชน์จากการลงทุนที่มีวิสัยทัศน์ อุตสาหกรรมทั้งหมดกำลังมุ่งหน้าสู่อนาคตที่ความล้มเหลวที่ไม่คาดคิดจะเกิดขึ้นน้อยลงเรื่อยๆ ต้นทุนการดำเนินงานจะลดลงอย่างมาก และความปลอดภัยจะไปถึงระดับที่ไม่เคยมีมาก่อน
สำหรับ บริษัท ที่ให้บริการโซลูชัน AI อุตสาหกรรมการบินถือเป็น ตลาดที่มีการเติบโตอย่างรวดเร็ว จาก 1.02 พันล้านดอลลาร์ในปี 2024 ไปสู่การคาดการณ์ 32.5 พันล้านดอลลาร์ในปี 2033 โดยมี ROI ที่ได้รับการพิสูจน์แล้วและกรณีการใช้งานในโลกแห่งความเป็นจริงที่มีอยู่แล้ว
อนาคตของการบินจะเป็นแบบคาดการณ์ได้ มีความชาญฉลาด และมีความปลอดภัยเพิ่มมากขึ้น ต้องขอบคุณปัญญาประดิษฐ์
ตอบ: โดยทั่วไปแล้ว การดำเนินการอย่างเต็มรูปแบบจะใช้เวลา 18-36 เดือน ซึ่งรวมถึงการรวบรวมข้อมูล การฝึกอบรมอัลกอริทึม การทดสอบ และการเปิดตัวแบบค่อยเป็นค่อยไป เดลต้าเริ่มต้นการดำเนินงานในปี 2558 และบรรลุผลลัพธ์ที่สำคัญภายในปี 2561
A: การลงทุนเริ่มต้นจะอยู่ระหว่าง 5-50 ล้านเหรียญสหรัฐ ขึ้นอยู่กับขนาดของกองเรือ แต่โดยทั่วไปแล้ว ROI จะได้รับภายใน 18-24 เดือน เนื่องจากการประหยัดจากการดำเนินงาน
ตอบ: ไม่ AI ช่วยเพิ่มขีดความสามารถของมนุษย์ แต่ไม่สามารถแทนที่ประสบการณ์และการตัดสินใจของวิศวกรได้ ระบบ AI ให้คำแนะนำที่ได้รับการรับรองจากผู้เชี่ยวชาญก่อนนำไปใช้งานจริงเสมอ
ตอบ: ปัจจุบันระบบ AI ทำงานในโหมด "ให้คำแนะนำ" ซึ่งวิศวกรที่ได้รับการรับรองจะเป็นผู้ตัดสินใจขั้นสุดท้ายเสมอ การรับรองตามกฎระเบียบกำหนดให้ต้องมีการทดสอบความปลอดภัยและความน่าเชื่อถืออย่างละเอียดถี่ถ้วนก่อนการอนุมัติ
A: ระบบจะวิเคราะห์ข้อมูลจากเซ็นเซอร์หลายพันตัว ได้แก่ อุณหภูมิ การสั่นสะเทือน แรงดัน อัตราสิ้นเปลืองเชื้อเพลิง พารามิเตอร์เครื่องยนต์ สภาพอากาศ และประวัติการทำงานของเครื่องบิน
ตอบ ใช่ ผ่านความร่วมมือกับผู้ให้บริการ MRO เฉพาะทางหรือแพลตฟอร์มบนคลาวด์ที่นำเสนอโซลูชันที่ปรับขนาดได้แม้กระทั่งสำหรับยานพาหนะขนาดเล็ก
ที่มาและอ้างอิง: