ธุรกิจ

เหนือกว่าอัลกอริทึม: โมเดล AI ได้รับการฝึกอบรมและปรับปรุงอย่างไร

"ข้อมูลคือกุญแจสำคัญ เปรียบเสมือนจอกศักดิ์สิทธิ์ของ AI เชิงสร้างสรรค์" — ฮิลารี แพคเกอร์ ประธานเจ้าหน้าที่ฝ่ายเทคโนโลยีของ American Express การจัดการข้อมูลคิดเป็น 80% ของความพยายามทั้งหมดในโครงการ AI DeepSeek ได้เปลี่ยนโฉมหน้าของวงการนี้: ต้นทุนการอนุมานอยู่ที่ 1 ใน 30 ของ OpenAI ดาริโอ อโมเดอิ: ต้นทุนลดลง 4 เท่าต่อปี "ผมคาดว่าต้นทุนจะลดลงเหลือศูนย์" — ประธานเจ้าหน้าที่ฝ่ายเทคโนโลยีของ Intuit การผสมผสานระหว่างการกลั่นกรองและ RAG คือเสน่ห์ที่บริษัทส่วนใหญ่ใช้ อนาคตล่ะ? โมเดลเฉพาะเจาะจงและคุ้มค่าจำนวนมากที่ฝังรากลึกอยู่ในข้อมูลองค์กร

วิธีการฝึกอบรม โมเดลปัญญาประดิษฐ์

การฝึก โมเดล AI เป็นหนึ่งในความท้าทายที่ซับซ้อนที่สุดในการพัฒนาเทคโนโลยีร่วมสมัย การฝึกโมเดลให้มีประสิทธิภาพนั้นไม่ใช่แค่เพียงปัญหาเชิงอัลกอริทึมธรรมดาๆ แต่ต้องใช้วิธีการแบบมีระเบียบวิธีและสหวิทยาการที่ผสานรวม ข้อมูล วิทยาศาสตร์ข้อมูล ความรู้เฉพาะด้าน และวิศวกรรมซอฟต์แวร์ ดังที่เจมส์ ลุค ได้เน้นย้ำไว้ในบทความสำคัญของเขาเรื่อง " Beyond Algorithms: Delivering AI for Business " ความสำเร็จของการนำ AI ไปใช้นั้นขึ้นอยู่กับการจัดการข้อมูลและการออกแบบระบบมากกว่าตัวอัลกอริทึมเอง สถานการณ์ปัจจุบันกำลังเปลี่ยนแปลงไปอย่างรวดเร็ว โดยมีนวัตกรรมต่างๆ เช่น โมเดล DeepSeek-R1 ที่ได้นิยามต้นทุนและการเข้าถึงข้อมูลใหม่

มูลนิธิ: การรวบรวมและจัดการข้อมูล

คุณภาพเหนือปริมาณ

ตรงกันข้ามกับความเชื่อที่แพร่หลาย ปริมาณข้อมูลไม่ใช่กุญแจสำคัญสู่ความสำเร็จเสมอไป คุณภาพและความเป็นตัวแทนข้อมูลมีความสำคัญมากกว่าอย่างมาก ในบริบทนี้ การผสานรวมแหล่งข้อมูลที่แตกต่างกันจึงเป็นสิ่งสำคัญ:

  • ข้อมูลของบุคคลที่หนึ่ง : รวบรวมอย่างมีจริยธรรมและไม่ระบุตัวตนโดยการใช้งานที่มีอยู่
  • ข้อมูลที่ได้รับอนุญาต : มาจากซัพพลายเออร์ที่เชื่อถือได้ซึ่งตรงตามมาตรฐานคุณภาพที่เข้มงวด
  • ชุดข้อมูลโอเพนซอร์ส : ได้รับการตรวจสอบอย่างรอบคอบเพื่อให้มั่นใจถึงความหลากหลายและความถูกต้อง
  • ข้อมูลสังเคราะห์ : สร้างขึ้นโดยเทียมเพื่อเติมช่องว่างและแก้ไขข้อกังวลด้านความเป็นส่วนตัว

การบูรณาการนี้สร้างรากฐานการฝึกอบรมที่ครอบคลุมซึ่งครอบคลุมสถานการณ์ในโลกแห่งความเป็นจริงในขณะที่ยังคงรักษามาตรฐานด้านจริยธรรมและความเป็นส่วนตัว

ความท้าทายในการเตรียมข้อมูล

กระบวนการ "จัดการข้อมูล" (หรือที่เรียกกันตามตรงว่า "การจัดการข้อมูล") คิดเป็นสัดส่วนถึง 80% ของความพยายามที่จำเป็นในโครงการปัญญาประดิษฐ์ ขั้นตอนนี้ประกอบด้วย:

  • การล้างข้อมูล : การกำจัดความไม่สอดคล้อง การซ้ำซ้อน และค่าผิดปกติ
  • การแปลงข้อมูล : การแปลงเป็นรูปแบบที่เหมาะสมต่อการประมวลผล
  • การรวมข้อมูล : การรวมแหล่งข้อมูลที่แตกต่างกันซึ่งมักใช้รูปแบบและรูปแบบที่เข้ากันไม่ได้
  • การจัดการข้อมูลที่ขาดหายไป : กลยุทธ์ต่างๆ เช่น การใส่ค่าทางสถิติหรือการใช้ข้อมูลพร็อกซี

ดังที่ ฮิลารี แพ็กเกอร์ ประธานเจ้าหน้าที่ฝ่ายเทคโนโลยีของ American Express ชี้ให้เห็นว่า "สำหรับเราแล้ว ช่วงเวลาแห่งการ "อ๋อ!" อย่างแท้จริงคือข้อมูล คุณสามารถเลือกแบบจำลองที่ดีที่สุดในโลกได้... แต่ข้อมูลคือกุญแจสำคัญ การตรวจสอบความถูกต้องและความแม่นยำคือเป้าหมายสูงสุดใน AI เชิงสร้างสรรค์ในขณะนี้"

สถาปัตยกรรมแบบจำลอง: ขนาดที่เหมาะสม

การเลือกสถาปัตยกรรมแบบจำลองควรพิจารณาจากลักษณะเฉพาะของปัญหาที่ต้องการแก้ไข ไม่ใช่จากอคติหรือความชอบส่วนบุคคล ปัญหาแต่ละประเภทต้องการแนวทางที่แตกต่างกัน:

  • แบบจำลองภาษาที่ใช้หม้อแปลง สำหรับงานที่ต้องใช้ความเข้าใจทางภาษาอย่างลึกซึ้ง
  • เครือข่ายประสาทเทียมแบบ Convolutional สำหรับการจดจำภาพและรูปแบบ
  • กราฟเครือข่ายประสาท สำหรับ วิเคราะห์ ความสัมพันธ์ที่ซับซ้อนระหว่างเอนทิตี
  • การเรียนรู้เสริมแรง สำหรับปัญหาการเพิ่มประสิทธิภาพและการตัดสินใจ
  • สถาปัตยกรรมไฮบริด ที่รวมวิธีการต่างๆ ไว้สำหรับกรณีการใช้งานที่ซับซ้อน

การเพิ่มประสิทธิภาพทางสถาปัตยกรรมต้องมีการประเมินอย่างเป็นระบบในรูปแบบการกำหนดค่าที่แตกต่างกัน โดยเฉพาะอย่างยิ่งการให้ความสำคัญต่อการแลกเปลี่ยนระหว่างประสิทธิภาพและข้อกำหนดในการคำนวณ ซึ่งเป็นประเด็นที่เกี่ยวข้องมากยิ่งขึ้นด้วยการถือกำเนิดของโมเดลเช่น DeepSeek-R1 ที่ให้ความสามารถในการใช้เหตุผลขั้นสูงด้วยต้นทุนที่ต่ำกว่าอย่างมาก

วิธีการฝึกอบรมขั้นสูง

การกลั่นแบบจำลอง

การกลั่นได้กลายมาเป็นเครื่องมือที่ทรงพลังอย่างยิ่งในระบบนิเวศ AI ในปัจจุบัน กระบวนการนี้ช่วยให้สามารถสร้างแบบจำลองที่เล็กลงและมีความเฉพาะทางมากขึ้น ซึ่งสืบทอดความสามารถในการใช้เหตุผลของแบบจำลองที่มีขนาดใหญ่และซับซ้อนกว่า เช่น DeepSeek-R1

ดังที่ DeepSeek แสดงให้เห็น บริษัท ได้กลั่นกรองความสามารถในการใช้เหตุผลของตนออกเป็นโมเดลย่อยๆ หลายแบบ ซึ่งรวมถึงโมเดลโอเพนซอร์สจากตระกูล Llama ของ Meta และตระกูล Qwen ของ Alibaba โมเดลย่อยๆ เหล่านี้สามารถปรับให้เหมาะกับงานเฉพาะทางได้ ซึ่งช่วยเร่งให้เกิดเทรนด์โมเดลเฉพาะทางที่รวดเร็วขึ้น

แซม วิทเทวีน นักพัฒนาซอฟต์แวร์การเรียนรู้ของเครื่อง กล่าวว่า "เรากำลังเริ่มก้าวเข้าสู่โลกที่ผู้คนใช้โมเดลหลายตัว พวกเขาไม่ได้ใช้โมเดลเดียวตลอดเวลา" ซึ่งรวมถึงโมเดลวงจรปิดราคาประหยัดอย่าง Gemini Flash และ GPT-4o Mini ซึ่ง "ทำงานได้ดีมากสำหรับ 80% ของกรณีการใช้งาน"

การเรียนรู้แบบหลายงาน

แทนที่จะฝึกโมเดลแยกกันสำหรับความสามารถที่เกี่ยวข้อง การเรียนรู้แบบมัลติทาสก์ช่วยให้โมเดลสามารถแบ่งปันความรู้ระหว่างฟังก์ชันต่างๆ ได้:

  • แบบจำลองปรับให้เหมาะสมพร้อมกันสำหรับวัตถุประสงค์ที่เกี่ยวข้องหลายประการ
  • ฟังก์ชันพื้นฐานได้รับประโยชน์จากการเปิดรับงานที่หลากหลายมากขึ้น
  • ประสิทธิภาพการทำงานดีขึ้นในทุกงาน โดยเฉพาะงานที่มีข้อมูลจำกัด
  • ประสิทธิภาพการคำนวณเพิ่มขึ้นผ่านการแบ่งปันส่วนประกอบ

การปรับแต่งอย่างละเอียดภายใต้การดูแล (SFT)

สำหรับบริษัทที่ดำเนินงานในโดเมนเฉพาะเจาะจงมาก ซึ่งข้อมูลไม่สามารถเข้าถึงได้อย่างแพร่หลายบนเว็บหรือในหนังสือที่มักใช้สำหรับการฝึกอบรมโมเดลภาษา การปรับแต่งอย่างละเอียดภายใต้การดูแล (SFT) ถือเป็นตัวเลือกที่มีประสิทธิภาพ

DeepSeek ได้แสดงให้เห็นว่าการบรรลุผลลัพธ์ที่ดีด้วยชุดข้อมูลคำถามและคำตอบ "หลายพัน" ชุดนั้นเป็นไปได้ ยกตัวอย่างเช่น คริส เฮย์ วิศวกรของ IBM ได้แสดงให้เห็นว่าเขาฝึกฝนโมเดลขนาดเล็กโดยใช้ชุดข้อมูลเฉพาะทางคณิตศาสตร์ของเขาเอง ซึ่งทำให้ได้คำตอบที่รวดเร็วอย่างยิ่ง ซึ่งมีประสิทธิภาพเหนือกว่าโมเดล o1 ของ OpenAI ในงานเดียวกัน

การเรียนรู้แบบเสริมแรง (RL)

บริษัทต่างๆ ที่ต้องการฝึกฝนโมเดลให้สอดคล้องกับความต้องการเฉพาะเจาะจงมากขึ้น เช่น การทำให้แชทบอทฝ่ายสนับสนุนลูกค้าเข้าใจง่ายแต่กระชับ จะต้องนำเทคนิคการเรียนรู้แบบเสริมแรง (RL) มาใช้ วิธีนี้มีประโยชน์อย่างยิ่งหากบริษัทต้องการให้แชทบอทปรับโทนเสียงและคำแนะนำตามความคิดเห็นของผู้ใช้

การดึงข้อมูล-การสร้างเสริม (RAG)

สำหรับบริษัทส่วนใหญ่ RAG (Retrieval-Augmented Generation) ถือเป็นวิธีที่ง่ายและปลอดภัยที่สุด เป็นกระบวนการที่ค่อนข้างตรงไปตรงมา ช่วยให้องค์กรต่างๆ สามารถยึดโยงโมเดลของตนกับข้อมูลที่เป็นกรรมสิทธิ์จากฐานข้อมูลของตนเองได้ ทำให้มั่นใจได้ว่าผลลัพธ์ที่ได้มีความถูกต้องแม่นยำและเฉพาะเจาะจงตามโดเมน

แนวทางนี้ยังช่วยแก้ปัญหาภาพหลอนบางส่วนที่เกี่ยวข้องกับโมเดล เช่น DeepSeek ซึ่งปัจจุบันภาพหลอนเกิดขึ้น 14 เปอร์เซ็นต์ เมื่อเทียบกับ 8 เปอร์เซ็นต์ของโมเดล o3 ของ OpenAI ตาม การศึกษาวิจัยของ Vectara

การผสมผสานระหว่างการกลั่นแบบจำลองและ RAG คือสิ่งที่สร้างความมหัศจรรย์ให้กับบริษัทส่วนใหญ่ โดยทำให้การนำไปใช้เป็นเรื่องง่ายอย่างเหลือเชื่อ แม้แต่กับบริษัทที่มีทักษะด้านวิทยาศาสตร์ข้อมูลหรือการเขียนโปรแกรมที่จำกัดก็ตาม

การประเมินและการปรับปรุง: เหนือกว่าความแม่นยำของเมตริก

AI ที่มีประสิทธิภาพไม่ได้วัดแค่เพียงความแม่นยำดิบเท่านั้น แต่ยังต้องมีกรอบการประเมินที่ครอบคลุมซึ่งพิจารณา:

  • ความแม่นยำในการทำงาน : โมเดลสร้างผลลัพธ์ที่ถูกต้องบ่อยแค่ไหน
  • ความแข็งแกร่ง : ความสม่ำเสมอของประสิทธิภาพภายใต้ปัจจัยนำเข้าและเงื่อนไขที่หลากหลาย
  • ความยุติธรรม : ประสิทธิภาพที่สม่ำเสมอในกลุ่มผู้ใช้และสถานการณ์ที่แตกต่างกัน
  • การสอบเทียบ : การจัดตำแหน่งระหว่างคะแนนความเชื่อมั่นและความแม่นยำที่แท้จริง
  • ประสิทธิภาพ : ความต้องการด้านการคำนวณและหน่วยความจำ
  • ความสามารถในการอธิบาย : ความโปร่งใสของกระบวนการตัดสินใจ ซึ่งเป็นพื้นที่ที่โมเดลที่กลั่นกรองของ DeepSeek โดดเด่น โดยแสดงให้เห็นถึงกระบวนการใช้เหตุผล

ผลกระทบของเส้นโค้งต้นทุน

ผลกระทบที่เกิดขึ้นทันทีที่สุดจากการเปิดตัว DeepSeek คือการลดราคาลงอย่างมาก วงการเทคโนโลยีคาดการณ์ว่าต้นทุนจะลดลงเมื่อเวลาผ่านไป แต่มีน้อยคนนักที่จะคาดการณ์ว่าจะเกิดขึ้นอย่างรวดเร็วเช่นนี้ DeepSeek ได้พิสูจน์แล้วว่าโมเดลแบบเปิดที่ทรงพลังนั้นสามารถทั้งคุ้มค่าและมีประสิทธิภาพ สร้างโอกาสสำหรับการทดลองในวงกว้างและการนำไปใช้งานที่คุ้มค่า

อัมร์ อาวาดัลลาห์ ซีอีโอของเวคทารา เน้นย้ำประเด็นนี้ โดยระบุว่าสิ่งที่เปลี่ยนเกมอย่างแท้จริงไม่ได้อยู่ที่ต้นทุนการฝึกเท่านั้น แต่ยังรวมถึงต้นทุนการอนุมานด้วย ซึ่งสำหรับ DeepSeek แล้ว ต้นทุนการอนุมานต่อโทเค็นอยู่ที่ประมาณ 1 ใน 30 ของโมเดล o1 หรือ o3 ของ OpenAI “ส่วนต่างกำไรที่ OpenAI, Anthropic และ Google Gemini ทำได้นั้นจะต้องลดลงอย่างน้อย 90% เนื่องจากพวกเขาไม่สามารถแข่งขันกับราคาที่สูงเช่นนี้ได้” อาวาดัลลาห์กล่าว

ไม่เพียงเท่านั้น ต้นทุนเหล่านี้จะยังคงลดลงอย่างต่อเนื่อง ดาริโอ อโมเด ซีอีโอของ Anthropic ระบุเมื่อเร็วๆ นี้ว่าต้นทุนการพัฒนาโมเดลยังคงลดลงอย่างต่อเนื่องในอัตราประมาณสี่ครั้งต่อปี ดังนั้น อัตราค่าบริการที่ผู้ให้บริการ LLM เรียกเก็บสำหรับการใช้งานโมเดลเหล่านี้ก็จะลดลงอย่างต่อเนื่องเช่นกัน

“ผมคาดหวังอย่างเต็มที่ว่าต้นทุนจะลดลงเหลือ ศูนย์ ” อโศก ศรีวาสตาวา CDO ของ Intuit บริษัทที่ผลักดัน AI อย่างหนักหน่วงในซอฟต์แวร์ภาษีและบัญชีอย่าง TurboTax และ Quickbooks กล่าว “...และความหน่วงจะลดลงเหลือศูนย์ สิ่งเหล่านี้จะกลายเป็นเพียงความสามารถพื้นฐานที่เราสามารถใช้งานได้”

บทสรุป: อนาคต ของ Enterprise AI เป็นแบบเปิด ราคาไม่แพง และขับเคลื่อนด้วยข้อมูล

DeepSeek และ Deep Research ของ OpenAI ไม่ได้เป็นแค่เครื่องมือใหม่ในคลังอาวุธ AI เท่านั้น แต่ยังเป็นสัญญาณของการเปลี่ยนแปลงครั้งสำคัญที่บริษัทต่างๆ จะปรับใช้โมเดลที่สร้างขึ้นเพื่อจุดประสงค์เฉพาะจำนวนมาก ซึ่งคุ้มต้นทุนอย่างยิ่ง มีความสามารถ และหยั่งรากลึกอยู่ในข้อมูลและแนวทางของบริษัทเอง

สำหรับบริษัทต่างๆ สิ่งสำคัญคือ เครื่องมือสำหรับสร้าง แอปพลิเคชัน AI ที่ทรงพลังและเฉพาะเจาะจงในแต่ละโดเมนนั้นอยู่ใกล้แค่เอื้อม คุณอาจถูกทิ้งไว้ข้างหลังหากไม่ใช้ประโยชน์จากเครื่องมือเหล่านี้ แต่ความสำเร็จที่แท้จริงจะมาจากวิธีการที่คุณจัดการข้อมูล ใช้ประโยชน์จากเทคนิคต่างๆ เช่น RAG และการกลั่นกรอง และการสร้างสรรค์นวัตกรรมที่เหนือกว่าขั้นตอนก่อนการฝึกอบรม

ดังที่ Packer จาก AmEx กล่าวไว้ บริษัทต่างๆ ที่จัดการข้อมูลได้ดีจะเป็นผู้นำนวัตกรรม AI รุ่นต่อไป

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

มนุษย์ + เครื่องจักร: สร้างทีมที่ประสบความสำเร็จด้วยเวิร์กโฟลว์ที่ขับเคลื่อนด้วย AI

จะเป็นอย่างไรหากอนาคตของการทำงานไม่ใช่ "มนุษย์ปะทะเครื่องจักร" แต่เป็นความร่วมมือเชิงกลยุทธ์ องค์กรที่ประสบความสำเร็จไม่ได้เลือกระหว่างบุคลากรที่มีความสามารถกับปัญญาประดิษฐ์ แต่พวกเขากำลังสร้างระบบนิเวศที่แต่ละฝ่ายส่งเสริมซึ่งกันและกัน ค้นพบโมเดลการทำงานร่วมกัน 5 แบบที่ได้เปลี่ยนแปลงบริษัทหลายร้อยแห่ง ตั้งแต่การคัดกรองไปจนถึงการโค้ช จากการสำรวจและยืนยันตัวตนไปจนถึงการฝึกงาน ประกอบไปด้วยแผนงานเชิงปฏิบัติ กลยุทธ์ในการเอาชนะอุปสรรคทางวัฒนธรรม และตัวชี้วัดที่เป็นรูปธรรมสำหรับการวัดความสำเร็จของทีมมนุษย์และเครื่องจักร
9 พฤศจิกายน 2568

ภาพลวงตาของการใช้เหตุผล: การถกเถียงที่สั่นคลอนโลก AI

Apple ตีพิมพ์บทความสองฉบับที่สร้างความเสียหายอย่างร้ายแรง ได้แก่ "GSM-Symbolic" (ตุลาคม 2024) และ "The Illusion of Thinking" (มิถุนายน 2025) ซึ่งแสดงให้เห็นว่าหลักสูตร LLM ล้มเหลวในการแก้ปัญหาคลาสสิกแบบเล็กๆ น้อยๆ (เช่น Tower of Hanoi, การข้ามแม่น้ำ) อย่างไร โดยระบุว่า "ประสิทธิภาพลดลงเมื่อเปลี่ยนแปลงเฉพาะค่าตัวเลข" ไม่มีความสำเร็จใดๆ เลยใน Tower of Hanoi ที่ซับซ้อน แต่ Alex Lawsen (Open Philanthropy) โต้แย้งด้วยบทความ "The Illusion of the Illusion of Thinking" ซึ่งแสดงให้เห็นถึงระเบียบวิธีที่มีข้อบกพร่อง ความล้มเหลวเกิดจากข้อจำกัดของผลลัพธ์โทเค็น ไม่ใช่การล่มสลายของเหตุผล สคริปต์อัตโนมัติจัดประเภทผลลัพธ์บางส่วนที่ถูกต้องไม่ถูกต้อง และปริศนาบางอย่างไม่สามารถแก้ทางคณิตศาสตร์ได้ ด้วยการทดสอบซ้ำด้วยฟังก์ชันแบบเรียกซ้ำแทนที่จะแสดงรายการการเคลื่อนที่ Claude/Gemini/GPT จึงสามารถไข Tower of Hanoi ที่มี 15 แผ่นได้ แกรี่ มาร์คัส เห็นด้วยกับแนวคิด "การเปลี่ยนแปลงการกระจายสินค้า" ของ Apple แต่บทความเกี่ยวกับจังหวะเวลาก่อนงาน WWDC กลับตั้งคำถามเชิงกลยุทธ์ ผลกระทบทางธุรกิจ: เราควรไว้วางใจ AI ในงานสำคัญๆ มากน้อยเพียงใด วิธีแก้ปัญหา: แนวทางเชิงสัญลักษณ์ประสาทวิทยา — เครือข่ายประสาทเทียมสำหรับการจดจำรูปแบบ + ภาษา ระบบสัญลักษณ์สำหรับตรรกะเชิงรูปนัย ตัวอย่าง: ระบบบัญชี AI เข้าใจว่า "ฉันใช้จ่ายไปกับการเดินทางเท่าไหร่" แต่ SQL/การคำนวณ/การตรวจสอบภาษี = โค้ดแบบกำหนดตายตัว
9 พฤศจิกายน 2568

🤖 Tech Talk: เมื่อ AI พัฒนาภาษาที่เป็นความลับ

แม้ว่า 61% ของผู้คนจะกังวลกับ AI ที่เข้าใจอยู่แล้ว แต่ในเดือนกุมภาพันธ์ 2025 Gibberlink มียอดวิว 15 ล้านครั้ง ด้วยการนำเสนอสิ่งใหม่สุดขั้ว นั่นคือ AI สองระบบที่หยุดพูดภาษาอังกฤษและสื่อสารกันด้วยเสียงแหลมสูงที่ความถี่ 1875-4500 เฮิรตซ์ ซึ่งมนุษย์ไม่สามารถเข้าใจได้ นี่ไม่ใช่นิยายวิทยาศาสตร์ แต่เป็นโปรโตคอล FSK ที่เพิ่มประสิทธิภาพได้ถึง 80% ทำลายมาตรา 13 ของพระราชบัญญัติ AI ของสหภาพยุโรป และสร้างความทึบแสงสองชั้น นั่นคืออัลกอริทึมที่เข้าใจยากซึ่งประสานงานกันในภาษาที่ถอดรหัสไม่ได้ วิทยาศาสตร์แสดงให้เห็นว่าเราสามารถเรียนรู้โปรโตคอลของเครื่องจักรได้ (เช่น รหัสมอร์สที่ความเร็ว 20-40 คำต่อนาที) แต่เราต้องเผชิญกับขีดจำกัดทางชีววิทยาที่ยากจะเอาชนะ: 126 บิต/วินาทีสำหรับมนุษย์ เทียบกับ Mbps+ สำหรับเครื่องจักร สามอาชีพใหม่กำลังเกิดขึ้น ได้แก่ นักวิเคราะห์โปรโตคอล AI, ผู้ตรวจสอบการสื่อสาร AI และนักออกแบบส่วนต่อประสานระหว่างมนุษย์กับ AI ขณะที่ IBM, Google และ Anthropic กำลังพัฒนามาตรฐาน (ACP, A2A, MCP) เพื่อหลีกเลี่ยงปัญหาที่ยากที่สุด การตัดสินใจเกี่ยวกับโปรโตคอลการสื่อสารของ AI ในปัจจุบันจะกำหนดทิศทางของปัญญาประดิษฐ์ในอีกหลายทศวรรษข้างหน้า