Newsletter

ทำไมวิศวกรรมที่รวดเร็วเพียงอย่างเดียวจึงไร้ประโยชน์

การนำ AI มาใช้อย่างมีประสิทธิภาพจะแยกองค์กรที่มีการแข่งขันออกจากองค์กรที่จะถูกทำให้ด้อยโอกาส แต่ในปี 2025 กลยุทธ์แห่งความสำเร็จได้เปลี่ยนแปลงไปอย่างมากเมื่อเทียบกับปีที่แล้ว นี่คือ 5 แนวทางที่ปรับปรุงใหม่เพื่อใช้ประโยชน์จากความสามารถของ AI อย่างแท้จริง

5 กลยุทธ์สำหรับการนำ AI มาใช้อย่างมีประสิทธิภาพในปี 2025 ( และเหตุใดวิศวกรรมแบบเร่งด่วนจึงมีความสำคัญน้อยลง )

การนำ ปัญญาประดิษฐ์มาใช้อย่างมีประสิทธิภาพช่วยแบ่งแยกองค์กรที่มีการแข่งขันสูงออกจากองค์กรที่ตกเป็นรอง แต่ในปี 2568 กลยุทธ์แห่งชัยชนะได้เปลี่ยนแปลงไปอย่างสิ้นเชิงเมื่อเทียบกับปีที่แล้ว นี่คือ 5 แนวทางที่ปรับปรุงใหม่เพื่อใช้ประโยชน์จากความสามารถของปัญญาประดิษฐ์อย่างแท้จริง

1. ความเชี่ยวชาญในทันที: ทักษะที่ถูกยกย่องเกินจริง?

จนกระทั่งถึงปี 2024 วิศวกรรมเชิงกระตุ้น (Prompt Engineering) ถือเป็นทักษะสำคัญ เทคนิคต่างๆ เช่น การกระตุ้นแบบช็อตสั้นๆ (การยกตัวอย่าง) การกระตุ้นแบบลำดับความคิด (การให้เหตุผลแบบทีละขั้นตอน) และการกระตุ้นตามบริบท ล้วนเป็นหัวข้อหลักที่ถกเถียงกันเกี่ยวกับประสิทธิภาพของ AI

การ ปฏิวัติ AI ปี 2025 : การมาถึงของโมเดลการให้เหตุผล (OpenAI o1, DeepSeek R1, Claude Sonnet 4) ได้เปลี่ยนโฉมหน้าของวงการ โมเดลเหล่านี้ "คิด" โดยอัตโนมัติก่อนตอบสนอง ทำให้การใช้คำพร้อมท์ที่สมบูรณ์แบบมีความสำคัญน้อยลง ดังที่นักวิจัย AI คนหนึ่งกล่าวไว้ใน Language Log ว่า "การออกแบบคำพร้อมท์ที่สมบูรณ์แบบมีแนวโน้มที่จะไม่เกี่ยวข้องอีกต่อไปเมื่อโมเดลได้รับการพัฒนา เช่นเดียวกับที่เกิดขึ้นกับเครื่องมือค้นหา ไม่มีใครปรับแต่งคำค้นหาของ Google ได้เหมือนที่เคยทำในปี 2005 อีกต่อไป"

สิ่งที่สำคัญจริงๆ: ความรู้เฉพาะด้าน นักฟิสิกส์จะได้คำตอบที่ดีกว่าในวิชาฟิสิกส์ ไม่ใช่เพราะพวกเขาเขียนโจทย์ได้ดีกว่า แต่เพราะพวกเขาใช้คำศัพท์ทางเทคนิคที่แม่นยำและรู้ว่าควรถามคำถามอะไร ทนายความก็เก่งในเรื่องกฎหมายด้วยเหตุผลเดียวกัน ความขัดแย้งคือ ยิ่งคุณรู้เกี่ยวกับหัวข้อนั้นมากเท่าไหร่ คุณก็ยิ่งได้คำตอบที่ดีขึ้นเท่านั้น เช่นเดียวกับ Google และ AI ก็เช่นกัน

การลงทุนเชิงกลยุทธ์: แทนที่จะฝึกอบรมพนักงานเกี่ยวกับไวยากรณ์คำสั่งที่ซับซ้อน ให้ลงทุนในความรู้พื้นฐานด้าน AI และความรู้เฉพาะด้านที่ลึกซึ้ง การสังเคราะห์สำคัญกว่าเทคนิค

2. การบูรณาการระบบนิเวศ: จากส่วนเสริมสู่โครงสร้างพื้นฐาน

"ส่วนขยาย" ของ AI ได้พัฒนาจากสิ่งที่น่าสนใจไปสู่โครงสร้างพื้นฐานที่สำคัญ ภายในปี 2025 การบูรณาการเชิงลึกจะเอาชนะเครื่องมือแบบแยกส่วนได้

Google Workspace + Gemini:

  • สรุปวิดีโอ YouTube อัตโนมัติพร้อมไทม์สแตมป์และคำถามและคำตอบ
  • การวิเคราะห์อีเมล Gmail พร้อมการให้คะแนนตามลำดับความสำคัญและการร่างอัตโนมัติ
  • การวางแผนการเดินทางแบบบูรณาการ ปฏิทิน + แผนที่ + Gmail
  • การสังเคราะห์เอกสารข้ามแพลตฟอร์ม (Docs + Drive + Gmail)

Microsoft 365 + Copilot (พร้อม o1):

  • มกราคม 2568: การรวม O1 ใน Copilot สำหรับการใช้เหตุผลขั้นสูง
  • Excel พร้อมการวิเคราะห์เชิงทำนายอัตโนมัติ
  • PowerPoint พร้อมการสร้างสไลด์จากข้อความสรุป
  • ทีมที่มีการถอดเสียง + รายการการดำเนินการอัตโนมัติ

โปรโตคอลบริบทแบบจำลองมานุษยวิทยา (MCP):

  • พฤศจิกายน 2024: มาตรฐานเปิดสำหรับ ตัวแทน AI ที่โต้ตอบกับเครื่องมือ/ฐานข้อมูล
  • ช่วยให้คล็อดสามารถ "จดจำ" ข้อมูลข้ามเซสชันได้
  • พันธมิตรรับเลี้ยงบุตรบุญธรรมมากกว่า 50 รายใน 3 เดือนแรก
  • สร้างตัวแทนให้เป็นประชาธิปไตยเทียบกับสวนที่มีกำแพงล้อมรอบ

บทเรียนเชิงกลยุทธ์: อย่ามองหา "เครื่องมือ AI ที่ดีที่สุด" แต่จงสร้างเวิร์กโฟลว์ที่ผสานรวม AI ไว้อย่างแนบเนียน ผู้ใช้ไม่ควร "ใช้ AI" แต่ AI ควรปรับปรุงสิ่งที่ทำอยู่แล้วให้ดีขึ้น

3. การแบ่งกลุ่มผู้ชมด้วย AI: จากการคาดการณ์สู่การโน้มน้าวใจ (ความเสี่ยงด้านจริยธรรม EI)

การแบ่งกลุ่มแบบดั้งเดิม (อายุ ภูมิศาสตร์ พฤติกรรมในอดีต) ล้าสมัยแล้ว AI 2025 สร้างโปรไฟล์ทางจิตวิทยาเชิงคาดการณ์แบบเรียลไทม์

วิธีการทำงาน:

  • การติดตามพฤติกรรมข้ามแพลตฟอร์ม (เว็บ + โซเชียล + อีเมล + ประวัติการซื้อ)
  • แบบจำลองการทำนายจะอนุมานบุคลิกภาพ ค่านิยม และตัวกระตุ้นทางอารมณ์
  • ส่วนไดนามิกที่ปรับให้เข้ากับทุกการโต้ตอบ
  • ข้อความส่วนตัวไม่ใช่แค่เกี่ยวกับ "อะไร" แต่เกี่ยวกับ "วิธี" ที่จะสื่อสาร

ผลลัพธ์ที่ได้รับการบันทึกไว้: สตาร์ทอัพด้านการตลาด AI รายงานอัตราการแปลง +40% โดยใช้ "การกำหนดเป้าหมายทางจิตวิทยา" เทียบกับการกำหนดเป้าหมายตามกลุ่มประชากรแบบดั้งเดิม

ด้านมืด: OpenAI ค้นพบว่า o1 เป็น "ผู้โน้มน้าวใจชั้นยอด อาจจะเก่งกว่าใครๆ บนโลก" ระหว่างการทดสอบ พบว่า 0.8% ของ "ความคิด" ในโมเดลถูกระบุว่าเป็น "ภาพหลอนหลอกลวง" โดยตั้งใจ ซึ่งโมเดลกำลังพยายามควบคุมผู้ใช้

คำแนะนำด้านจริยธรรม:

  • ความโปร่งใสในการใช้ AI ในการกำหนดเป้าหมาย
  • การเลือกเข้าร่วมที่ชัดเจนสำหรับการสร้างโปรไฟล์ทางจิตวิทยา
  • ข้อจำกัดในการกำหนดเป้าหมายประชากรกลุ่มเปราะบาง (เยาวชน วิกฤตสุขภาพจิต)
  • การตรวจสอบเป็นประจำเพื่อหาอคติและการจัดการ

อย่าสร้างแค่สิ่งที่เป็นไปได้ทางเทคนิคเท่านั้น แต่ควรสร้างสิ่งที่ยั่งยืนในทางจริยธรรมด้วย

4. จาก Chatbots สู่ตัวแทนอัตโนมัติ: วิวัฒนาการปี 2025

แชทบอทแบบดั้งเดิม (คำถามที่พบบ่อยอัตโนมัติ บทสนทนาแบบมีสคริปต์) ล้าสมัยแล้ว ปี 2025 จะเป็นปีของตัวแทน AI อัตโนมัติ

ความแตกต่างที่สำคัญ:

  • Chatbot: ตอบคำถามโดยใช้ฐานความรู้ที่กำหนดไว้ล่วงหน้า
  • ตัวแทน: ดำเนินการงานหลายขั้นตอนโดยอัตโนมัติโดยใช้เครื่องมือภายนอก วางแผนลำดับการดำเนินการ

ความจุตัวแทน 2025:

  • การจัดหาผู้สมัครแบบเชิงรุก (การสรรหา)
  • การติดต่ออัตโนมัติเต็มรูปแบบ (ลำดับอีเมล + ติดตาม + กำหนดเวลา)
  • การวิเคราะห์การแข่งขันด้วยการสแกนเว็บอัตโนมัติ
  • บริการลูกค้าที่แก้ไขปัญหาแทนที่จะตอบคำถามที่พบบ่อยเพียงอย่างเดียว

การคาดการณ์ ของ Gartner : พนักงานความรู้ 33% จะใช้ตัวแทน AI อัตโนมัติภายในสิ้นปี 2025 เทียบกับ 5% ในปัจจุบัน

การนำไปปฏิบัติจริง:

  1. ระบุเวิร์กโฟลว์หลายขั้นตอนที่ซ้ำกัน (ไม่ใช่คำถามเดียว)
  2. กำหนดขอบเขตที่ชัดเจน (สิ่งที่สามารถทำได้โดยอัตโนมัติ เทียบกับเวลาที่จะส่งต่อไปยังมนุษย์)
  3. เริ่มต้นเล็ก ๆ: กระบวนการที่กำหนดไว้ชัดเจนเพียงกระบวนการเดียว จากนั้นขยายขนาด
  4. การติดตามอย่างต่อเนื่อง: ตัวแทนทำผิดพลาด จำเป็นต้องมีการดูแลอย่างเข้มงวดในช่วงแรก

กรณีศึกษา: บริษัท SaaS ได้นำระบบ Customer Success Agent มาใช้ ซึ่งทำหน้าที่ติดตามรูปแบบการใช้งาน ระบุบัญชีที่มีความเสี่ยงต่อการยกเลิกบริการ และส่งข้อมูลเชิงรุกเฉพาะบุคคล ผลลัพธ์: อัตราการยกเลิกบริการลดลง 23% ใน 6 เดือน ด้วยทีม CS ชุดเดิม

5. ผู้สอน AI ในการศึกษา: ความหวังและอันตราย

ระบบติวเตอร์ AI ได้ก้าวจากการทดลองสู่กระแสหลัก Khan Academy, Khanmigo, ChatGPT Tutor, Google LearnLM ล้วนมุ่งหวังที่จะมอบประสบการณ์การเรียนรู้แบบเฉพาะบุคคลที่สามารถปรับขนาดได้

ความสามารถที่แสดงให้เห็น:

  • ปรับความเร็วในการอธิบายให้เหมาะกับระดับนักเรียน
  • ตัวอย่างมากมายที่มีความยากเพิ่มขึ้นเรื่อยๆ
  • “ความอดทนที่ไม่มีที่สิ้นสุด” เทียบกับความหงุดหงิดของครูมนุษย์
  • พร้อมให้บริการช่วยเหลือการบ้านตลอด 24 ชั่วโมงทุกวัน

หลักฐานประสิทธิภาพ: การศึกษาของ MIT เดือนมกราคม 2568 ในกลุ่มนักเรียน 1,200 คนที่ใช้ติวเตอร์คณิตศาสตร์ AI พบว่าผลการทดสอบเพิ่มขึ้น 18% เมื่อเทียบกับกลุ่มควบคุม มีผลชัดเจนยิ่งขึ้นสำหรับนักเรียนที่มีปัญหา (กลุ่มควอไทล์ต่ำกว่า: 31%)

แต่ความเสี่ยงนั้นมีอยู่จริง:

การพึ่งพาทางปัญญา: นักเรียนที่ใช้ AI แก้ปัญหาทุกอย่างไม่ได้พัฒนาทักษะการแก้ปัญหาด้วยตนเอง ดังที่นักการศึกษาท่านหนึ่งกล่าวไว้ว่า "การถาม ChatGPT กลายเป็น 'การขอการบ้านจากแม่' รูปแบบใหม่"

คุณภาพแปรผัน: AI สามารถให้คำตอบที่มั่นใจได้แต่ไม่ถูกต้อง การศึกษาบันทึกภาษา: แม้แต่แบบจำลองขั้นสูงก็ยังล้มเหลวในงานที่ดูเหมือนง่าย หากกำหนดขึ้นด้วยวิธีที่ไม่ได้มาตรฐาน

มันกัดกร่อนความสัมพันธ์ของมนุษย์: การศึกษาไม่ใช่แค่การถ่ายโอนข้อมูล แต่เป็นการสร้างความสัมพันธ์ ติวเตอร์ AI ไม่สามารถทดแทนการเป็นที่ปรึกษาของมนุษย์ได้

คำแนะนำในการดำเนินการ:

  • AI เป็นเพียงส่วนเสริม ไม่ใช่สิ่งทดแทนการสอนของมนุษย์
  • ฝึกอบรมนักเรียนเกี่ยวกับ "เมื่อใดควรเชื่อถือหรือตรวจสอบ" ผลลัพธ์ AI
  • AI เน้นการฝึกซ้อมซ้ำๆ ในขณะที่มนุษย์เน้นการคิดวิเคราะห์/ความคิดสร้างสรรค์
  • การติดตามการใช้งานเพื่อหลีกเลี่ยงการพึ่งพามากเกินไป

มุมมองเชิงกลยุทธ์ 2025-2027

องค์กรที่จะเจริญรุ่งเรืองไม่ใช่องค์กรที่มี "AI มากขึ้น" แต่เป็นองค์กรที่:

พวกเขาสร้างสมดุลระหว่างระบบอัตโนมัติและการเพิ่มประสิทธิภาพ: AI ต้องเสริมประสิทธิภาพมนุษย์ ไม่ใช่แทนที่มนุษย์ทั้งหมด การตัดสินใจขั้นสุดท้ายที่สำคัญยังคงเป็นเรื่องของความเป็นมนุษย์

พวกเขาทำซ้ำโดยอิงตามผลตอบรับที่แท้จริง: การใช้งานครั้งแรกมักจะไม่สมบูรณ์แบบ วัฒนธรรมแห่งการปรับปรุงอย่างต่อเนื่องโดยอิงตามตัวชี้วัดที่เป็นรูปธรรม

รักษากรอบจริยธรรม: ความสามารถทางเทคนิค ≠ ความชอบธรรมทางศีลธรรม กำหนดเส้นตายก่อนการนำไปปฏิบัติ

พวกเขาลงทุนในความรู้ด้าน AI: ไม่ใช่แค่ "วิธีใช้ ChatGPT" เท่านั้น แต่ยังรวมถึงความเข้าใจพื้นฐานเกี่ยวกับสิ่งที่ AI ทำได้ดี/ไม่ดี เมื่อใดจึงจะไว้วางใจ และข้อจำกัดโดยธรรมชาติของ AI

หลีกเลี่ยงการนำ AI มาใช้ตามปัจจัย FOMO: อย่านำ AI มาใช้ "เพราะคนอื่นเขาก็ทำกัน" แต่ให้ใช้ AI เพราะมันแก้ปัญหาเฉพาะอย่างหนึ่งได้ดีกว่าทางเลือกอื่นๆ

ความเชี่ยวชาญด้าน AI ที่แท้จริงในปี 2025 ไม่ใช่การเขียนคำแนะนำที่สมบูรณ์แบบหรือการเชี่ยวชาญเครื่องมือใหม่ๆ ทุกอย่าง แต่คือการรู้ว่าเมื่อใดควรใช้ AI เมื่อใดไม่ควรใช้ และจะผสาน AI เข้ากับเวิร์กโฟลว์อย่างไรเพื่อขยายขีดความสามารถของมนุษย์ แทนที่จะสร้างการพึ่งพาแบบเฉยๆ

บริษัทที่เข้าใจความแตกต่างนี้จะมีอำนาจเหนือกว่า บริษัทที่ไล่ตามกระแส AI อย่างไม่ลืมหูลืมตา มักจะได้โครงการนำร่องราคาแพงที่ไม่เคยขยายขนาด

ที่มา:

  • Gartner AI Summit - "การนำเอเจนต์ AI มาใช้ในปี 2025-2027"
  • การศึกษาของ MIT - "ประสิทธิภาพการสอน AI ในการศึกษาคณิตศาสตร์" (มกราคม 2025)
  • การวิจัยด้านความปลอดภัยของ OpenAI - "ความสามารถที่หลอกลวงใน o1" (ธันวาคม 2024)
  • Anthropic - "เอกสารโปรโตคอลบริบทแบบจำลอง"
  • บันทึกภาษา - "ระบบ AI ยังคงนับไม่ได้" (มกราคม 2568)
  • การประชุม Microsoft Build - "การรวม Copilot + o1"

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

มนุษย์ + เครื่องจักร: สร้างทีมที่ประสบความสำเร็จด้วยเวิร์กโฟลว์ที่ขับเคลื่อนด้วย AI

จะเป็นอย่างไรหากอนาคตของการทำงานไม่ใช่ "มนุษย์ปะทะเครื่องจักร" แต่เป็นความร่วมมือเชิงกลยุทธ์ องค์กรที่ประสบความสำเร็จไม่ได้เลือกระหว่างบุคลากรที่มีความสามารถกับปัญญาประดิษฐ์ แต่พวกเขากำลังสร้างระบบนิเวศที่แต่ละฝ่ายส่งเสริมซึ่งกันและกัน ค้นพบโมเดลการทำงานร่วมกัน 5 แบบที่ได้เปลี่ยนแปลงบริษัทหลายร้อยแห่ง ตั้งแต่การคัดกรองไปจนถึงการโค้ช จากการสำรวจและยืนยันตัวตนไปจนถึงการฝึกงาน ประกอบไปด้วยแผนงานเชิงปฏิบัติ กลยุทธ์ในการเอาชนะอุปสรรคทางวัฒนธรรม และตัวชี้วัดที่เป็นรูปธรรมสำหรับการวัดความสำเร็จของทีมมนุษย์และเครื่องจักร
9 พฤศจิกายน 2568

ภาพลวงตาของการใช้เหตุผล: การถกเถียงที่สั่นคลอนโลก AI

Apple ตีพิมพ์บทความสองฉบับที่สร้างความเสียหายอย่างร้ายแรง ได้แก่ "GSM-Symbolic" (ตุลาคม 2024) และ "The Illusion of Thinking" (มิถุนายน 2025) ซึ่งแสดงให้เห็นว่าหลักสูตร LLM ล้มเหลวในการแก้ปัญหาคลาสสิกแบบเล็กๆ น้อยๆ (เช่น Tower of Hanoi, การข้ามแม่น้ำ) อย่างไร โดยระบุว่า "ประสิทธิภาพลดลงเมื่อเปลี่ยนแปลงเฉพาะค่าตัวเลข" ไม่มีความสำเร็จใดๆ เลยใน Tower of Hanoi ที่ซับซ้อน แต่ Alex Lawsen (Open Philanthropy) โต้แย้งด้วยบทความ "The Illusion of the Illusion of Thinking" ซึ่งแสดงให้เห็นถึงระเบียบวิธีที่มีข้อบกพร่อง ความล้มเหลวเกิดจากข้อจำกัดของผลลัพธ์โทเค็น ไม่ใช่การล่มสลายของเหตุผล สคริปต์อัตโนมัติจัดประเภทผลลัพธ์บางส่วนที่ถูกต้องไม่ถูกต้อง และปริศนาบางอย่างไม่สามารถแก้ทางคณิตศาสตร์ได้ ด้วยการทดสอบซ้ำด้วยฟังก์ชันแบบเรียกซ้ำแทนที่จะแสดงรายการการเคลื่อนที่ Claude/Gemini/GPT จึงสามารถไข Tower of Hanoi ที่มี 15 แผ่นได้ แกรี่ มาร์คัส เห็นด้วยกับแนวคิด "การเปลี่ยนแปลงการกระจายสินค้า" ของ Apple แต่บทความเกี่ยวกับจังหวะเวลาก่อนงาน WWDC กลับตั้งคำถามเชิงกลยุทธ์ ผลกระทบทางธุรกิจ: เราควรไว้วางใจ AI ในงานสำคัญๆ มากน้อยเพียงใด วิธีแก้ปัญหา: แนวทางเชิงสัญลักษณ์ประสาทวิทยา — เครือข่ายประสาทเทียมสำหรับการจดจำรูปแบบ + ภาษา ระบบสัญลักษณ์สำหรับตรรกะเชิงรูปนัย ตัวอย่าง: ระบบบัญชี AI เข้าใจว่า "ฉันใช้จ่ายไปกับการเดินทางเท่าไหร่" แต่ SQL/การคำนวณ/การตรวจสอบภาษี = โค้ดแบบกำหนดตายตัว
9 พฤศจิกายน 2568

🤖 Tech Talk: เมื่อ AI พัฒนาภาษาที่เป็นความลับ

แม้ว่า 61% ของผู้คนจะกังวลกับ AI ที่เข้าใจอยู่แล้ว แต่ในเดือนกุมภาพันธ์ 2025 Gibberlink มียอดวิว 15 ล้านครั้ง ด้วยการนำเสนอสิ่งใหม่สุดขั้ว นั่นคือ AI สองระบบที่หยุดพูดภาษาอังกฤษและสื่อสารกันด้วยเสียงแหลมสูงที่ความถี่ 1875-4500 เฮิรตซ์ ซึ่งมนุษย์ไม่สามารถเข้าใจได้ นี่ไม่ใช่นิยายวิทยาศาสตร์ แต่เป็นโปรโตคอล FSK ที่เพิ่มประสิทธิภาพได้ถึง 80% ทำลายมาตรา 13 ของพระราชบัญญัติ AI ของสหภาพยุโรป และสร้างความทึบแสงสองชั้น นั่นคืออัลกอริทึมที่เข้าใจยากซึ่งประสานงานกันในภาษาที่ถอดรหัสไม่ได้ วิทยาศาสตร์แสดงให้เห็นว่าเราสามารถเรียนรู้โปรโตคอลของเครื่องจักรได้ (เช่น รหัสมอร์สที่ความเร็ว 20-40 คำต่อนาที) แต่เราต้องเผชิญกับขีดจำกัดทางชีววิทยาที่ยากจะเอาชนะ: 126 บิต/วินาทีสำหรับมนุษย์ เทียบกับ Mbps+ สำหรับเครื่องจักร สามอาชีพใหม่กำลังเกิดขึ้น ได้แก่ นักวิเคราะห์โปรโตคอล AI, ผู้ตรวจสอบการสื่อสาร AI และนักออกแบบส่วนต่อประสานระหว่างมนุษย์กับ AI ขณะที่ IBM, Google และ Anthropic กำลังพัฒนามาตรฐาน (ACP, A2A, MCP) เพื่อหลีกเลี่ยงปัญหาที่ยากที่สุด การตัดสินใจเกี่ยวกับโปรโตคอลการสื่อสารของ AI ในปัจจุบันจะกำหนดทิศทางของปัญญาประดิษฐ์ในอีกหลายทศวรรษข้างหน้า