Newsletter

ทำไมคณิตศาสตร์ถึงยาก (แม้ว่าคุณจะเป็น AI ก็ตาม)

แบบจำลองภาษาไม่สามารถคูณได้ พวกมันจดจำผลลัพธ์ได้เหมือนกับที่เราจดจำค่าพาย แต่ไม่ได้หมายความว่าพวกมันมีความสามารถทางคณิตศาสตร์ ปัญหาอยู่ที่โครงสร้าง พวกมันเรียนรู้ผ่านความคล้ายคลึงทางสถิติ ไม่ใช่ความเข้าใจเชิงอัลกอริทึม แม้แต่ "แบบจำลองการใช้เหตุผล" ใหม่ๆ อย่าง o1 ก็ยังล้มเหลวในงานเล็กๆ น้อยๆ เช่น มันสามารถนับตัว 'r' ในคำว่า "strawberry" ได้อย่างถูกต้องหลังจากประมวลผลเพียงไม่กี่วินาที แต่ล้มเหลวเมื่อต้องเขียนย่อหน้าโดยที่ตัวอักษรตัวที่สองของแต่ละประโยคสะกดเป็นคำ เวอร์ชันพรีเมียมราคา 200 ดอลลาร์ต่อเดือนใช้เวลาสี่นาทีในการแก้ปัญหาสิ่งที่เด็กสามารถทำได้ทันที DeepSeek และ Mistral ยังคงนับตัวอักษรไม่ถูกต้องในปี 2025 วิธีแก้ปัญหาที่กำลังเกิดขึ้น? วิธีการแบบผสมผสาน แบบจำลองที่ชาญฉลาดที่สุดได้ค้นพบว่าเมื่อใดจึงควรเรียกใช้เครื่องคิดเลขจริง แทนที่จะพยายามคำนวณเอง การเปลี่ยนแปลงกระบวนทัศน์: AI ไม่จำเป็นต้องรู้วิธีทำทุกอย่าง แต่สามารถจัดสรรเครื่องมือที่เหมาะสมได้ พาราด็อกซ์สุดท้าย: GPT-4 สามารถอธิบายทฤษฎีลิมิตได้อย่างยอดเยี่ยม แต่กลับไม่สามารถแก้โจทย์การคูณที่เครื่องคิดเลขพกพามักจะแก้ได้อย่างถูกต้อง GPT-4 เหมาะอย่างยิ่งสำหรับการศึกษาคณิตศาสตร์ เพราะสามารถอธิบายด้วยความอดทนอย่างไม่มีที่สิ้นสุด ดัดแปลงตัวอย่าง และวิเคราะห์เหตุผลที่ซับซ้อนได้ หากต้องการการคำนวณที่แม่นยำ เชื่อเครื่องคิดเลขเถอะ ไม่ใช่ปัญญาประดิษฐ์

หลายคนก็ใช้ LLM ในการคำนวณทางคณิตศาสตร์ด้วย วิธีนี้ใช้ไม่ได้ผล

ประเด็นจริงๆ แล้วง่ายมาก: แบบจำลองภาษาขนาดใหญ่ (LLM) ไม่รู้วิธีการคูณจริงๆ บางครั้งพวกมันก็ให้ผลลัพธ์ที่ถูกต้อง เหมือนกับที่ผมอาจจำค่าพายได้แม่นยำ แต่นั่นไม่ได้หมายความว่าผมเป็นนักคณิตศาสตร์ หรือ LLM รู้วิธีคำนวณจริงๆ

ตัวอย่างการปฏิบัติ

ตัวอย่าง: 49858 *5994949 = 298896167242 ผลลัพธ์นี้จะเหมือนเดิมเสมอ ไม่มีจุดกึ่งกลาง มีเพียงถูกหรือผิดเท่านั้น

แม้จะฝึกฝนอย่างหนักโดยเน้นคณิตศาสตร์ แต่แบบจำลองที่ดีที่สุดกลับสามารถแก้โจทย์การคำนวณได้อย่างถูกต้องเพียงเศษเสี้ยวเดียว ในทางกลับกัน เครื่องคิดเลข พกพาธรรมดาๆ กลับให้ผลลัพธ์ที่ถูกต้อง 100% ทุกครั้ง ยิ่งตัวเลขมีขนาดใหญ่เท่าไหร่ ปริญญานิติศาสตร์ (LLM) ก็ยิ่งแย่ลงเท่านั้น

ปัญหาเหล่านี้สามารถแก้ไขได้ไหม?

ปัญหาพื้นฐานคือโมเดลเหล่านี้เรียนรู้จากความคล้ายคลึง ไม่ใช่จากความเข้าใจ โมเดลเหล่านี้ทำงานได้ดีที่สุดกับปัญหาที่คล้ายกับปัญหาที่ฝึกฝนมา แต่กลับไม่สามารถพัฒนาความเข้าใจที่แท้จริงในสิ่งที่กำลังพูดถึงได้

สำหรับผู้ที่ต้องการเรียนรู้เพิ่มเติม ฉันขอแนะนำบทความนี้เกี่ยวกับ " LLM ทำงานอย่างไร "

ในทางกลับกัน เครื่องคิดเลขใช้อัลกอริทึมที่แม่นยำซึ่งได้รับการตั้งโปรแกรมเพื่อดำเนินการทางคณิตศาสตร์

นี่คือเหตุผลที่เราไม่ควรพึ่งพา LLM เพียงอย่างเดียวในการคำนวณทางคณิตศาสตร์ แม้แต่ในสภาวะที่ดีที่สุดซึ่งมีข้อมูลการฝึกอบรมเฉพาะทางจำนวนมาก ก็ยังไม่สามารถรับประกันความน่าเชื่อถือได้ แม้แต่ในการดำเนินการขั้นพื้นฐานที่สุด วิธีการแบบผสมผสานอาจได้ผล แต่ LLM เพียงอย่างเดียวไม่เพียงพอ บางทีวิธีการนี้อาจถูกนำมาใช้เพื่อแก้ปัญหาที่เรียกว่า "ปัญหา สตรอว์เบอร์รี "

การประยุกต์ใช้ LLMs ในการศึกษาวิชาคณิตศาสตร์

ในบริบททางการศึกษา ปริญญานิติศาสตรมหาบัณฑิต (LLM) สามารถทำหน้าที่เป็นติวเตอร์ส่วนตัว สามารถปรับคำอธิบายให้เหมาะสมกับระดับความเข้าใจของนักศึกษาได้ ยกตัวอย่างเช่น เมื่อนักศึกษาเผชิญกับปัญหาแคลคูลัสเชิงอนุพันธ์ ปริญญานิติศาสตรมหาบัณฑิตสามารถแบ่งย่อย เหตุผล ออกเป็นขั้นตอนที่ง่ายขึ้น โดยให้คำอธิบายโดยละเอียดสำหรับแต่ละขั้นตอนของกระบวนการแก้ปัญหา วิธีการนี้ช่วยสร้างความเข้าใจที่มั่นคงในแนวคิดพื้นฐาน

สิ่งที่น่าสนใจอย่างยิ่งคือความสามารถของหลักสูตร LLM ในการสร้างตัวอย่างที่เกี่ยวข้องและหลากหลาย หากนักศึกษาต้องการทำความเข้าใจแนวคิดเรื่องขีดจำกัด หลักสูตร LLM ก็สามารถนำเสนอสถานการณ์ทางคณิตศาสตร์ที่หลากหลายได้ ตั้งแต่กรณีศึกษาง่ายๆ ไปจนถึงสถานการณ์ที่ซับซ้อนยิ่งขึ้น ช่วยให้เข้าใจแนวคิดนี้ได้อย่างก้าวหน้า

การประยุกต์ใช้งานที่น่าสนใจอย่างหนึ่งคือการใช้หลักสูตรปริญญาโทสาขานิติศาสตร์ (LLM) เพื่อแปลแนวคิดทางคณิตศาสตร์ที่ซับซ้อนให้เป็นภาษาธรรมชาติที่เข้าถึงได้ง่ายขึ้น ซึ่งจะช่วยให้การสื่อสารทางคณิตศาสตร์เข้าถึงผู้คนในวงกว้างขึ้น และอาจช่วยเอาชนะอุปสรรคแบบดั้งเดิมในการเข้าสู่สาขาวิชานี้

หลักสูตรนิติศาสตรมหาบัณฑิต (LLM) ยังสามารถช่วยในการเตรียมสื่อการสอน จัดทำแบบฝึกหัดที่มีความยากง่ายแตกต่างกัน และให้ข้อเสนอแนะโดยละเอียดเกี่ยวกับแนวทางแก้ปัญหาที่นักศึกษาเสนอ ซึ่งช่วยให้ครูผู้สอนสามารถออกแบบการเรียนรู้ของนักศึกษาให้เหมาะสมกับตนเองได้ดียิ่งขึ้น

ข้อได้เปรียบที่แท้จริง

โดยทั่วไปแล้ว สิ่งสำคัญคือต้องพิจารณาถึง "ความอดทน" อย่างมากที่จำเป็นต่อการช่วยให้แม้แต่นักเรียนที่มีความสามารถน้อยที่สุดในการเรียนรู้ ในกรณีนี้ การไม่มีอารมณ์ช่วยได้ อย่างไรก็ตาม แม้แต่ AI บางครั้งก็ "หมดความอดทน" ดู ตัวอย่าง "ตลกๆ" นี้

อัปเดตปี 2025: โมเดลการใช้เหตุผลและแนวทางไฮบริด

ปี 2024-2025 นำมาซึ่งการพัฒนาที่สำคัญด้วยการมาถึงของสิ่งที่เรียกว่า "แบบจำลองการใช้เหตุผล" เช่น OpenAI o1 และ deepseek R1 แบบจำลองเหล่านี้ให้ผลลัพธ์ที่น่าประทับใจในเกณฑ์มาตรฐานทางคณิตศาสตร์: o1 สามารถแก้โจทย์คณิตศาสตร์โอลิมปิกระหว่างประเทศได้อย่างถูกต้องถึง 83% เมื่อเทียบกับ GPT-4o ที่ทำได้เพียง 13% แต่โปรดระวัง: แบบจำลองเหล่านี้ไม่สามารถแก้ปัญหาพื้นฐานที่อธิบายไว้ข้างต้นได้

ปัญหาสตรอว์เบอร์รี—การนับตัว r ในคำว่า "strawberry"—แสดงให้เห็นถึงข้อจำกัดที่ยังคงอยู่ได้อย่างสมบูรณ์แบบ o1 แก้ปัญหาได้อย่างถูกต้องหลังจาก "คิดหาเหตุผล" อยู่สองสามวินาที แต่ถ้าคุณขอให้มันเขียนย่อหน้าโดยให้ตัวอักษรตัวที่สองของแต่ละประโยคสะกดคำว่า "CODE" มันก็ล้มเหลว o1-pro เวอร์ชันราคา 200 ดอลลาร์ต่อเดือน แก้ปัญหานี้ได้... หลังจากประมวลผลไป 4 นาที DeepSeek R1 และโมเดลอื่นๆ ในปัจจุบันยังคงนับจำนวนพื้นฐานผิดพลาด จนถึงเดือนกุมภาพันธ์ 2025 Mistral ยังคงบอกคุณว่ามีตัว r เพียงสองตัวในคำว่า "strawberry"

กลเม็ดใหม่ที่กำลังเกิดขึ้นคือวิธีการแบบผสมผสาน: เมื่อจำเป็นต้องคูณ 49858 ด้วย 5994949 โมเดลที่ก้าวหน้าที่สุดจะไม่พยายาม "เดา" ผลลัพธ์โดยอาศัยความคล้ายคลึงกับการคำนวณที่เห็นระหว่างการฝึกอีกต่อไป แต่จะใช้เครื่องคิดเลขหรือรันโค้ด Python แทน เหมือนกับมนุษย์อัจฉริยะที่รู้ข้อจำกัดของตัวเอง

"การใช้เครื่องมือ" นี้แสดงถึงการเปลี่ยนแปลงกระบวนทัศน์: AI ไม่จำเป็นต้องสามารถทำทุกอย่างได้ด้วยตัวเอง แต่ต้องสามารถจัดสรรเครื่องมือที่เหมาะสมได้ แบบจำลองการใช้เหตุผลผสานรวมความสามารถทางภาษาศาสตร์เพื่อทำความเข้าใจปัญหา การใช้เหตุผลแบบทีละขั้นตอนเพื่อวางแผนการแก้ปัญหา และการมอบหมายงานไปยังเครื่องมือเฉพาะทาง (เครื่องคิดเลข ล่ามภาษา Python และฐานข้อมูล) เพื่อการดำเนินการที่แม่นยำ

บทเรียนคืออะไร? นักศึกษาปริญญาโทสาขานิติศาสตร์ (LLM) ปี 2025 มีประโยชน์ทางคณิตศาสตร์มากกว่า ไม่ใช่ เพราะ พวกเขา "เรียนรู้" การคูณแล้ว หรือยังไม่ได้ทำจริง ๆ แต่เพราะพวกเขาบางคนเริ่มเข้าใจว่าเมื่อใดควรมอบหมายการคูณให้กับผู้ที่รู้วิธีทำจริง ๆ ปัญหาพื้นฐานยังคงอยู่ นั่นคือ พวกเขาทำงานโดยอาศัยความคล้ายคลึงทางสถิติ ไม่ใช่ความเข้าใจในอัลกอริทึม เครื่องคิดเลขราคาห้ายูโรยังคงเชื่อถือได้มากกว่าอย่างไม่สิ้นสุดสำหรับการคำนวณที่แม่นยำ

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

กฎระเบียบ AI สำหรับการใช้งานของผู้บริโภค: วิธีการเตรียมพร้อมสำหรับกฎระเบียบใหม่ปี 2025

ปี 2025 ถือเป็นจุดสิ้นสุดของยุค "Wild West" ของ AI: พระราชบัญญัติ AI ของสหภาพยุโรปจะมีผลบังคับใช้ในเดือนสิงหาคม 2024 โดยมีข้อกำหนดด้านความรู้ด้าน AI ตั้งแต่วันที่ 2 กุมภาพันธ์ 2025 และมีการกำกับดูแลและ GPAI ตั้งแต่วันที่ 2 สิงหาคม รัฐแคลิฟอร์เนียเป็นผู้นำด้วย SB 243 (เกิดขึ้นหลังจากการฆ่าตัวตายของ Sewell Setzer เด็กอายุ 14 ปีที่มีความสัมพันธ์ทางอารมณ์กับแชทบอท) ซึ่งกำหนดข้อห้ามระบบรางวัลแบบย้ำคิดย้ำทำ การตรวจจับความคิดฆ่าตัวตาย การเตือน "ฉันไม่ใช่มนุษย์" ทุกสามชั่วโมง การตรวจสอบสาธารณะโดยอิสระ และค่าปรับ 1,000 ดอลลาร์ต่อการละเมิด SB 420 กำหนดให้มีการประเมินผลกระทบสำหรับ "การตัดสินใจอัตโนมัติที่มีความเสี่ยงสูง" พร้อมสิทธิ์ในการอุทธรณ์การตรวจสอบโดยมนุษย์ การบังคับใช้จริง: Noom ถูกฟ้องร้องในปี 2022 ในข้อหาใช้บอทปลอมตัวเป็นโค้ชมนุษย์ ซึ่งเป็นการยอมความมูลค่า 56 ล้านดอลลาร์ แนวโน้มระดับชาติ: รัฐแอละแบมา ฮาวาย อิลลินอยส์ เมน และแมสซาชูเซตส์ ระบุว่าการไม่แจ้งเตือนแชทบอท AI ถือเป็นการละเมิด UDAP แนวทางความเสี่ยงสามระดับ ได้แก่ ระบบสำคัญ (การดูแลสุขภาพ/การขนส่ง/พลังงาน) การรับรองก่อนการใช้งาน การเปิดเผยข้อมูลที่โปร่งใสต่อผู้บริโภค การลงทะเบียนเพื่อวัตถุประสงค์ทั่วไป และการทดสอบความปลอดภัย กฎระเบียบที่ซับซ้อนโดยไม่มีการยึดครองอำนาจจากรัฐบาลกลาง: บริษัทหลายรัฐต้องปฏิบัติตามข้อกำหนดที่แปรผัน สหภาพยุโรป ตั้งแต่เดือนสิงหาคม 2569: แจ้งให้ผู้ใช้ทราบเกี่ยวกับการโต้ตอบกับ AI เว้นแต่เนื้อหาที่สร้างโดย AI ที่ชัดเจนและติดป้ายว่าสามารถอ่านได้ด้วยเครื่อง
9 พฤศจิกายน 2568

เมื่อ AI กลายเป็นตัวเลือกเดียวของคุณ (และทำไมคุณถึงชอบมัน)

บริษัทแห่งหนึ่งได้ปิดระบบ AI ของตนอย่างลับๆ เป็นเวลา 72 ชั่วโมง ผลลัพธ์ที่ได้คือ การตัดสินใจที่หยุดชะงักโดยสิ้นเชิง ปฏิกิริยาที่พบบ่อยที่สุดเมื่อได้รับการจ้างงานอีกครั้งคือความโล่งใจ ภายในปี 2027 การตัดสินใจทางธุรกิจ 90% จะถูกมอบหมายให้กับ AI โดยมนุษย์จะทำหน้าที่เป็น "ตัวประสานทางชีวภาพ" เพื่อรักษาภาพลวงตาของการควบคุม ผู้ที่ต่อต้านจะถูกมองเหมือนกับผู้ที่คำนวณด้วยมือหลังจากการประดิษฐ์เครื่องคิดเลข คำถามไม่ได้อยู่ที่ว่าเราจะยอมหรือไม่ แต่เป็นคำถามที่ว่าเราจะยอมอย่างสง่างามเพียงใด
9 พฤศจิกายน 2568

การควบคุมสิ่งที่ไม่ได้ถูกสร้างขึ้น: ยุโรปมีความเสี่ยงต่อการไม่เกี่ยวข้องทางเทคโนโลยีหรือไม่?

ยุโรปดึงดูดการลงทุนด้าน AI เพียงหนึ่งในสิบของทั่วโลก แต่กลับอ้างว่าเป็นผู้กำหนดกฎเกณฑ์ระดับโลก นี่คือ "ปรากฏการณ์บรัสเซลส์" การกำหนดกฎระเบียบระดับโลกผ่านอำนาจทางการตลาดโดยไม่ผลักดันนวัตกรรม พระราชบัญญัติ AI จะมีผลบังคับใช้ตามกำหนดเวลาแบบสลับกันจนถึงปี 2027 แต่บริษัทข้ามชาติด้านเทคโนโลยีกำลังตอบสนองด้วยกลยุทธ์การหลบเลี่ยงที่สร้างสรรค์ เช่น การใช้ความลับทางการค้าเพื่อหลีกเลี่ยงการเปิดเผยข้อมูลการฝึกอบรม การจัดทำสรุปที่สอดคล้องทางเทคนิคแต่เข้าใจยาก การใช้การประเมินตนเองเพื่อลดระดับระบบจาก "ความเสี่ยงสูง" เป็น "ความเสี่ยงน้อยที่สุด" และการเลือกใช้ฟอรัมโดยเลือกประเทศสมาชิกที่มีการควบคุมที่เข้มงวดน้อยกว่า ความขัดแย้งของลิขสิทธิ์นอกอาณาเขต: สหภาพยุโรปเรียกร้องให้ OpenAI ปฏิบัติตามกฎหมายของยุโรปแม้กระทั่งการฝึกอบรมนอกยุโรป ซึ่งเป็นหลักการที่ไม่เคยพบเห็นมาก่อนในกฎหมายระหว่างประเทศ "แบบจำลองคู่ขนาน" เกิดขึ้น: เวอร์ชันยุโรปที่จำกัดเทียบกับเวอร์ชันสากลขั้นสูงของผลิตภัณฑ์ AI เดียวกัน ความเสี่ยงที่แท้จริง: ยุโรปกลายเป็น "ป้อมปราการดิจิทัล" ที่แยกตัวออกจากนวัตกรรมระดับโลก โดยพลเมืองยุโรปเข้าถึงเทคโนโลยีที่ด้อยกว่า ศาลยุติธรรมได้ปฏิเสธข้อแก้ตัวเรื่อง "ความลับทางการค้า" ในคดีเครดิตสกอร์ไปแล้ว แต่ความไม่แน่นอนในการตีความยังคงมีอยู่อย่างมหาศาล คำว่า "สรุปโดยละเอียดเพียงพอ" หมายความว่าอย่างไรกันแน่? ไม่มีใครรู้ คำถามสุดท้ายที่ยังไม่มีคำตอบคือ สหภาพยุโรปกำลังสร้างช่องทางที่สามทางจริยธรรมระหว่างทุนนิยมสหรัฐฯ กับการควบคุมของรัฐจีน หรือเพียงแค่ส่งออกระบบราชการไปยังภาคส่วนที่จีนไม่สามารถแข่งขันได้? ในตอนนี้: ผู้นำระดับโลกด้านการกำกับดูแล AI แต่การพัฒนายังอยู่ในขอบเขตจำกัด โครงการอันกว้างใหญ่
9 พฤศจิกายน 2568

Outliers: เมื่อวิทยาศาสตร์ข้อมูลพบกับเรื่องราวความสำเร็จ

วิทยาศาสตร์ข้อมูลได้พลิกโฉมกระบวนทัศน์เดิมๆ: ค่าผิดปกติไม่ใช่ "ข้อผิดพลาดที่ต้องกำจัด" อีกต่อไป แต่เป็นข้อมูลอันมีค่าที่ต้องทำความเข้าใจ ค่าผิดปกติเพียงค่าเดียวสามารถบิดเบือนแบบจำลองการถดถอยเชิงเส้นได้อย่างสิ้นเชิง โดยเปลี่ยนความชันจาก 2 เป็น 10 แต่การกำจัดค่าผิดปกตินั้นอาจหมายถึงการสูญเสียสัญญาณที่สำคัญที่สุดในชุดข้อมูล การเรียนรู้ของเครื่องได้นำเครื่องมือที่ซับซ้อนมาใช้: Isolation Forest แยกแยะค่าผิดปกติโดยการสร้างต้นไม้ตัดสินใจแบบสุ่ม Local Outlier Factor วิเคราะห์ความหนาแน่นเฉพาะที่ และ Autoencoders จะสร้างข้อมูลปกติขึ้นใหม่และทำเครื่องหมายสิ่งที่ไม่สามารถทำซ้ำได้ ค่าผิดปกติมีทั้งค่าผิดปกติทั่วไป (อุณหภูมิ -10°C ในเขตร้อน) ค่าผิดปกติตามบริบท (การใช้จ่าย 1,000 ยูโรในย่านยากจน) และค่าผิดปกติแบบรวม (จุดสูงสุดของการรับส่งข้อมูลเครือข่ายที่ซิงโครไนซ์กันซึ่งบ่งชี้ถึงการโจมตี) เช่นเดียวกับ Gladwell: "กฎ 10,000 ชั่วโมง" ยังคงเป็นที่ถกเถียงกัน — Paul McCartney กล่าวไว้ว่า "วงดนตรีหลายวงทำงาน 10,000 ชั่วโมงในฮัมบูร์กโดยไม่ประสบความสำเร็จ ทฤษฎีนี้ไม่ได้พิสูจน์ความถูกต้อง" ความสำเร็จทางคณิตศาสตร์ของเอเชียไม่ได้เกิดจากพันธุกรรม แต่เกิดจากวัฒนธรรม: ระบบตัวเลขที่เข้าใจง่ายกว่าของจีน การเพาะปลูกข้าวต้องได้รับการพัฒนาอย่างต่อเนื่อง เทียบกับการขยายอาณาเขตของภาคเกษตรกรรมตะวันตก การประยุกต์ใช้จริง: ธนาคารในสหราชอาณาจักรฟื้นตัวจากความสูญเสียที่อาจเกิดขึ้นได้ 18% ผ่านการตรวจจับความผิดปกติแบบเรียลไทม์ การผลิตตรวจพบข้อบกพร่องในระดับจุลภาคที่การตรวจสอบโดยมนุษย์อาจมองข้าม การดูแลสุขภาพยืนยันข้อมูลการทดลองทางคลินิกด้วยความไวต่อการตรวจจับความผิดปกติมากกว่า 85% บทเรียนสุดท้าย: เมื่อวิทยาศาสตร์ข้อมูลเปลี่ยนจากการกำจัดค่าผิดปกติไปสู่การทำความเข้าใจค่าผิดปกติ เราต้องมองอาชีพที่ไม่ธรรมดาว่าไม่ใช่ความผิดปกติที่ต้องแก้ไข แต่เป็นเส้นทางที่มีค่าที่ต้องศึกษา