ธุรกิจ

ข้อมูลการฝึกอบรม AI: ธุรกิจมูลค่า 10,000 ล้านดอลลาร์ที่ขับเคลื่อนปัญญาประดิษฐ์

Scale AI มีมูลค่า 29 พันล้านดอลลาร์สหรัฐ และคุณอาจไม่เคยได้ยินมาก่อน มันคืออุตสาหกรรมข้อมูลการฝึกอบรมที่มองไม่เห็นที่ขับเคลื่อน ChatGPT และ Stable Diffusion ซึ่งเป็นตลาดมูลค่า 9.58 พันล้านดอลลาร์สหรัฐที่เติบโต 27.7% ต่อปี ต้นทุนเพิ่มขึ้นถึง 4,300% ตั้งแต่ปี 2020 (Gemini Ultra: 192 ล้านดอลลาร์สหรัฐ) แต่ภายในปี 2028 จะไม่มีข้อความมนุษย์ที่เผยแพร่สู่สาธารณะอีกต่อไป ในขณะเดียวกัน พบคดีความละเมิดลิขสิทธิ์และหนังสือเดินทางหลายล้านเล่มในชุดข้อมูล สำหรับบริษัท: คุณสามารถเริ่มต้นใช้งานได้ฟรีด้วย Hugging Face และ Google Colab

อุตสาหกรรมที่มองไม่เห็นที่ทำให้ ChatGPT, Stable Diffusion และระบบ AI สมัยใหม่อื่นๆ เป็นไปได้

ความลับที่ AI เก็บรักษาไว้เป็นอย่างดี

เมื่อคุณใช้ ChatGPT เพื่อเขียนอีเมลหรือสร้างภาพด้วย Midjourney คุณแทบจะไม่คิดถึง "ความมหัศจรรย์" เบื้องหลัง AI เลย ทว่าเบื้องหลังทุกการตอบสนองอันชาญฉลาดและทุกภาพที่ถูกสร้างขึ้น กลับมีอุตสาหกรรมมูลค่าหลายพันล้านดอลลาร์ที่น้อยคนนักจะพูดถึง นั่นคือ ตลาดข้อมูลการฝึกอบรม AI

ภาคส่วนนี้ ซึ่ง MarketsandMarkets คาดการณ์ว่าจะมีมูลค่าสูงถึง 9.58 พันล้าน ดอลลาร์สหรัฐภายในปี 2572 ด้วยอัตราการเติบโตต่อปีที่ 27.7% ถือเป็นกลไกขับเคลื่อนที่แท้จริงของปัญญาประดิษฐ์สมัยใหม่ แต่ธุรกิจที่แฝงอยู่นี้ทำงานอย่างไรกันแน่?

ระบบนิเวศที่มองไม่เห็นที่เคลื่อนย้ายเงินนับพันล้าน

ยักษ์ใหญ่แห่งวงการพาณิชย์

โลกของข้อมูลการฝึกอบรม AI ถูกครอบงำโดยบริษัทไม่กี่แห่งที่คนส่วนใหญ่ไม่เคยได้ยินชื่อ:

Scale AI บริษัท ที่ใหญ่ที่สุด ในอุตสาหกรรมด้วย ส่วนแบ่งตลาด 28% มีมูลค่าสูงถึง 2.9 หมื่นล้านดอลลาร์ สหรัฐฯ หลังจากการลงทุนของ Meta ลูกค้าองค์กรของพวกเขาจ่ายเงิน ระหว่าง 100,000 ถึงหลายล้านดอลลาร์ สหรัฐฯ ต่อปีสำหรับข้อมูลคุณภาพสูง

Appen ซึ่งตั้งอยู่ในประเทศออสเตรเลีย ดำเนินงาน เครือข่ายผู้เชี่ยวชาญทั่วโลกกว่า 1 ล้านคน ใน 170 ประเทศ ซึ่งทำหน้าที่ติดป้ายกำกับและดูแลข้อมูลสำหรับ AI ด้วยตนเอง บริษัทต่างๆ เช่น Airbnb, John Deere และ Procter & Gamble ใช้บริการของพวกเขาเพื่อ "ฝึกอบรม" โมเดล AI ของพวกเขา

โลกโอเพ่นซอร์ส

ในเวลาเดียวกัน ยังมีระบบนิเวศโอเพนซอร์สที่นำโดยองค์กรต่างๆ เช่น LAION (Large-scale Artificial Intelligence Open Network) ซึ่งเป็นองค์กรไม่แสวงหากำไรของเยอรมนีที่สร้าง LAION-5B ซึ่งเป็นชุดข้อมูลที่มี คู่ภาพ-ข้อความจำนวน 5.85 พันล้านคู่ ที่ทำให้ Stable Diffusion เป็นไปได้

Common Crawl เผยแพร่ ข้อมูลเว็บดิบขนาดหลายเทราไบต์ ทุกเดือน ซึ่งใช้ในการฝึกอบรม GPT-3, LLaMA และโมเดลภาษาอื่นๆ อีกมากมาย

ต้นทุนที่ซ่อนอยู่ของปัญญาประดิษฐ์

สิ่งที่สาธารณชนไม่ทราบคือค่าใช้จ่ายในการฝึกอบรมโมเดล AI สมัยใหม่นั้นแพงมากเพียงใด จากข้อมูลของ Epoch AI พบว่าต้นทุนเพิ่มขึ้น 2-3 เท่าต่อปีในช่วงแปดปีที่ผ่านมา

ตัวอย่างต้นทุนที่แท้จริง:

สถิติที่น่าประหลาดใจที่สุด? จากข้อมูลของ AltIndex.com พบว่าต้นทุนการฝึกอบรม AI เพิ่มขึ้น 4,300% ตั้งแต่ปี 2020

ความท้าทายด้านจริยธรรมและกฎหมายของภาคส่วน

คำถามเรื่องลิขสิทธิ์

หนึ่งในประเด็นที่ถกเถียงกันมากที่สุดคือการใช้เนื้อหาที่มีลิขสิทธิ์ ในเดือนกุมภาพันธ์ พ.ศ. 2568 ศาลรัฐเดลาแวร์ได้ตัดสินในคดี Thomson Reuters v. ROSS Intelligence ว่าการฝึกอบรม AI สามารถถือเป็นการละเมิดลิขสิทธิ์โดยตรงได้ โดยปฏิเสธข้อต่อสู้ในประเด็น "การใช้งานโดยชอบธรรม"

สำนักงานลิขสิทธิ์ของสหรัฐฯ ได้เผยแพร่รายงาน 108 หน้าที่สรุปว่าการใช้งานบางประเภทไม่สามารถปกป้องได้ว่าเป็นการใช้งานโดยชอบด้วยกฎหมาย ซึ่งเปิดโอกาสให้บริษัท AI ต้องจ่ายค่าธรรมเนียมใบอนุญาตจำนวนมหาศาล

ความเป็นส่วนตัวและข้อมูลส่วนบุคคล

การตรวจสอบโดย MIT Technology Review เปิดเผยว่า DataComp CommonPool ซึ่งเป็นหนึ่งในชุดข้อมูลที่ใช้กันอย่างแพร่หลายที่สุด มี รูปภาพหนังสือเดินทาง บัตรเครดิต และสูติบัตรหลายล้านรูป ด้วยยอดดาวน์โหลดมากกว่า 2 ล้านครั้งในช่วงสองปีที่ผ่านมา เรื่องนี้จึงก่อให้เกิดข้อกังวลด้านความเป็นส่วนตัวอย่างมาก

อนาคต: ความขาดแคลนและนวัตกรรม

ปัญหา "ข้อมูลสูงสุด"

ผู้เชี่ยวชาญคาดการณ์ว่าภายใน ปี 2028 ข้อความสาธารณะส่วนใหญ่ที่มนุษย์สร้างขึ้นซึ่งมีอยู่บนอินเทอร์เน็ตจะถูกนำไปใช้ สถานการณ์ "ข้อมูลสูงสุด" นี้กำลังผลักดันให้บริษัทต่างๆ มุ่งสู่โซลูชันที่เป็นนวัตกรรม:

  • ข้อมูลสังเคราะห์ : การสร้างข้อมูลการฝึกอบรมแบบเทียม
  • ข้อตกลงการอนุญาตสิทธิ์ : ความร่วมมือเชิงกลยุทธ์ เช่น ความร่วมมือระหว่าง OpenAI และ Financial Times
  • ข้อมูลหลายโหมด : การรวมข้อความ รูปภาพ เสียง และวิดีโอ

กฎระเบียบใหม่กำลังจะมาเร็วๆ นี้

California AI Transparency Act จะกำหนดให้บริษัทต่างๆ เปิดเผยชุดข้อมูลที่ใช้ในการฝึกอบรม ในขณะที่สหภาพยุโรปกำลังดำเนินการตามข้อกำหนดที่คล้ายคลึงกันใน AI Act

โอกาสสำหรับบริษัทอิตาลี

สำหรับบริษัทต่างๆ ที่ต้องการพัฒนาโซลูชัน AI การทำความเข้าใจระบบนิเวศนี้ถือเป็นสิ่งสำคัญ:

ตัวเลือกที่เป็นมิตรกับงบประมาณ:

โซลูชั่นสำหรับองค์กร:

  • ปรับขนาด AI และ Appen สำหรับโครงการที่มีความสำคัญต่อภารกิจ
  • บริการเฉพาะทาง : เช่น Nexdata สำหรับ NLP หรือ FileMarket AI สำหรับข้อมูลเสียง

บทสรุป

ตลาดข้อมูลการฝึกอบรม AI มีมูลค่า 9.58 พันล้านดอลลาร์สหรัฐ และเติบโตในอัตรา 27.7% ต่อปี อุตสาหกรรมที่มองไม่เห็นนี้ไม่เพียงแต่เป็นเครื่องยนต์ขับเคลื่อน AI ยุคใหม่เท่านั้น แต่ยังเป็นหนึ่งในความท้าทายด้านจริยธรรมและกฎหมายที่ยิ่งใหญ่ที่สุดในยุคสมัยของเราอีกด้วย

ในบทความถัดไป เราจะมาสำรวจว่าบริษัทต่างๆ สามารถเข้าสู่โลกนี้ได้อย่างไร พร้อมคำแนะนำปฏิบัติสำหรับการเริ่มต้นพัฒนาโซลูชัน AI โดยใช้ชุดข้อมูลและเครื่องมือที่มีอยู่ในปัจจุบัน

สำหรับผู้ที่ต้องการเจาะลึกในทันที เราได้จัดทำคู่มือโดยละเอียดพร้อมแผนงานการใช้งาน ค่าใช้จ่ายเฉพาะ และชุดเครื่องมือที่สมบูรณ์ ซึ่งดาวน์โหลดได้ฟรีโดยการลงทะเบียน newsletter -

ลิงค์ที่เป็นประโยชน์เพื่อเริ่มต้นได้ทันที:

  • สภาพแวดล้อมการพัฒนา : Google Colab (ฟรีพร้อม GPU)
  • ชุดข้อมูลโอเพนซอร์ส : ชุดข้อมูล Hugging Face
  • เครื่องมือคำอธิบายประกอบ : Label Studio (ฟรี)
  • การใช้งานอย่างรวดเร็ว : Gradio + HF Spaces
  • หลักสูตรปฏิบัติจริง : Fast.ai (ฟรี ปฏิบัติจริง)

แหล่งข้อมูลทางเทคนิค:

อย่ารอ "การปฏิวัติ AI" จงสร้างสรรค์มันขึ้นมา อีกหนึ่งเดือนนับจากนี้ คุณอาจมีโมเดลที่ใช้งานได้จริงตัวแรก ในขณะที่คนอื่น ๆ ยังคงวางแผนอยู่

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

ความขัดแย้งของ AI เชิงสร้างสรรค์: เมื่อความคิดสร้างสรรค์ของแต่ละบุคคลคุกคามความหลากหลาย

เรื่องราวที่เขียนด้วย AI มีความคิดสร้างสรรค์มากกว่า เขียนได้ดีกว่า น่าสนใจกว่า และมีความคล้ายคลึงกันมากขึ้นเรื่อยๆ การศึกษานักเขียน 293 คนเผยให้เห็นถึงความขัดแย้งของความหลากหลายโดยรวม: AI ส่งเสริมความคิดสร้างสรรค์ของแต่ละบุคคล แต่กลับทำให้ผลลัพธ์โดยรวมมีความเป็นเนื้อเดียวกัน ใครได้ประโยชน์มากที่สุด? ผู้ที่มีความคิดสร้างสรรค์น้อยกว่า AI ทำหน้าที่เป็น "ตัวปรับระดับ" โดยนำทุกคนไปสู่ระดับกลางถึงสูง แต่กลับทำให้ความหลากหลายลดลง นี่คือภาวะกลืนไม่เข้าคายไม่ออกทางสังคม: แต่ละคนเก่งกว่า แต่โดยรวมแล้วเราสร้างความหลากหลายได้น้อยกว่า
9 พฤศจิกายน 2568

Electe :เปลี่ยนข้อมูลของคุณให้เป็นการคาดการณ์ที่แม่นยำเพื่อความสำเร็จทางธุรกิจ

บริษัทที่คาดการณ์แนวโน้มของตลาดได้ดีกว่าคู่แข่ง แต่ส่วนใหญ่ยังคงตัดสินใจโดยใช้สัญชาตญาณมากกว่าข้อมูล Electe แพลตฟอร์มนี้ช่วยแก้ไขช่องว่างนี้โดยการแปลงข้อมูลในอดีตให้เป็นการคาดการณ์ที่นำไปปฏิบัติได้จริงโดยใช้การเรียนรู้ของเครื่องขั้นสูง (ML) โดยไม่จำเป็นต้องมีความเชี่ยวชาญทางเทคนิค แพลตฟอร์มนี้ทำให้กระบวนการคาดการณ์เป็นอัตโนมัติอย่างสมบูรณ์สำหรับกรณีการใช้งานที่สำคัญ ได้แก่ การคาดการณ์แนวโน้มผู้บริโภคสำหรับการตลาดแบบเจาะกลุ่ม การเพิ่มประสิทธิภาพการจัดการสินค้าคงคลังโดยการคาดการณ์ความต้องการ การจัดสรรทรัพยากรอย่างมีกลยุทธ์ และการค้นหาโอกาสก่อนคู่แข่ง การใช้งานสี่ขั้นตอนที่ไร้แรงเสียดทาน ได้แก่ การโหลดข้อมูลในอดีต เลือกตัวบ่งชี้เพื่อวิเคราะห์ อัลกอริทึมพัฒนาการคาดการณ์ และใช้ข้อมูลเชิงลึกเพื่อการตัดสินใจเชิงกลยุทธ์ สามารถผสานรวมกับกระบวนการที่มีอยู่ได้อย่างราบรื่น ผลตอบแทนจากการลงทุน (ROI) ที่วัดผลได้ผ่านการลดต้นทุนผ่านการวางแผนที่แม่นยำ เพิ่มความเร็วในการตัดสินใจ ลดความเสี่ยงในการดำเนินงาน และระบุโอกาสการเติบโตใหม่ๆ วิวัฒนาการจากการวิเคราะห์เชิงพรรณนา (สิ่งที่เกิดขึ้น) ไปสู่การวิเคราะห์เชิงคาดการณ์ (สิ่งที่จะเกิดขึ้น) ได้เปลี่ยนบริษัทจากการตอบสนองเชิงรับไปสู่เชิงรุก ทำให้บริษัทเหล่านี้ก้าวขึ้นเป็นผู้นำในอุตสาหกรรมด้วยความได้เปรียบในการแข่งขันจากการคาดการณ์ที่แม่นยำ
9 พฤศจิกายน 2568

ความขัดแย้งของ AI เชิงสร้างสรรค์: บริษัทต่างๆ ทำซ้ำความผิดพลาดเดิมๆ มานาน 30 ปีแล้ว

78% ของบริษัทได้นำ AI เชิงสร้างสรรค์มาใช้ และ 78% รายงานว่าไม่มีผลกระทบต่อผลกำไรเลย ทำไมน่ะหรือ? ความผิดพลาดแบบเดียวกับที่เกิดขึ้นในช่วง 30 ปีที่ผ่านมา: ซีดีรอมสำหรับแคตตาล็อกกระดาษ เว็บไซต์สำหรับโบรชัวร์ มือถือ = เดสก์ท็อปที่เล็กลง ดิจิทัล = กระดาษที่สแกน ปี 2025: พวกเขาใช้ ChatGPT เพื่อเขียนอีเมลได้เร็วขึ้นแทนที่จะลดอีเมล 70% ด้วยการคิดใหม่เกี่ยวกับการสื่อสาร จำนวนความล้มเหลว: 92% จะเพิ่มการลงทุนใน AI แต่มีเพียง 1% เท่านั้นที่มีการนำ AI ไปใช้อย่างเต็มรูปแบบ 90% ของโครงการนำร่องยังไม่สามารถผลิตได้ มีการลงทุน 109.1 พันล้านดอลลาร์สหรัฐในสหรัฐอเมริกาในปี 2024 กรณีศึกษาจริง (พนักงาน 200 คน): เพิ่มอีเมล 2,100 ฉบับต่อวันเป็น 630 ฉบับภายใน 5 เดือน ด้วยการแทนที่การอัปเดตสถานะด้วยแดชบอร์ดแบบสด การอนุมัติด้วยเวิร์กโฟลว์อัตโนมัติ การประสานงานการประชุมด้วยการจัดตารางงานด้วย AI การแบ่งปันข้อมูลด้วยฐานความรู้อัจฉริยะ — ผลตอบแทนจากการลงทุน (ROI) ภายใน 3 เดือน ผู้นำ AI ที่เริ่มต้นจากศูนย์มีรายได้เติบโต 1.5 เท่า ผลตอบแทนผู้ถือหุ้น 1.6 เท่า กรอบแนวคิดต่อต้านความขัดแย้ง: การตรวจสอบที่เข้มงวด ("แบบนี้จะมีอยู่ไหมถ้าฉันสร้างใหม่ตั้งแต่ต้น") การกำจัดแบบสุดโต่ง การปรับโครงสร้างโดยเน้น AI เป็นอันดับแรก คำถามที่ผิด: "เราจะเพิ่ม AI เข้าไปได้อย่างไร" คำถามที่ถูกต้อง: "จะเป็นอย่างไรถ้าเราสร้างใหม่ตั้งแต่ต้นวันนี้?"