ธุรกิจ

กับดักแห่งการทำนาย: ทำไมการทำนายอนาคตจึงไม่เพียงพอ

แบบจำลองการทำนายที่ซับซ้อนซึ่งสร้างการคาดการณ์ที่ไม่มีใครใช้ นั่นคือ "กับดักการทำนาย" ตามนิยามแล้ว AI คือการมองย้อนหลัง: ข้อมูลในอดีตคือวัตถุดิบ มันระบุความสัมพันธ์ ไม่ใช่สาเหตุ คำถามที่แท้จริงไม่ใช่ "อะไรอาจเกิดขึ้น" แต่เป็น "เราควรทำอย่างไร" บริษัทที่ประสบความสำเร็จในปี 2025 ไม่มีอัลกอริทึมที่ดีกว่า พวกเขาผสานรวม AI เข้ากับกระบวนการตัดสินใจ การเปลี่ยนแปลงมุมมอง: มอง AI ไม่ใช่เทคโนโลยีการทำนาย แต่เป็นเทคโนโลยีที่ช่วยเพิ่มประสิทธิภาพการตัดสินใจ

การแนะนำ

บริษัทหลายแห่งตกอยู่ในสิ่งที่เราเรียกว่า "กับดักการคาดการณ์" ซึ่งก็คือการลงทุนอย่างหนักในเทคโนโลยี AI เชิงคาดการณ์โดยไม่ตระหนักว่าความสามารถเหล่านี้เป็นเพียงส่วนหนึ่งของมูลค่าที่ AI สามารถนำเสนอต่อการตัดสินใจทางธุรกิจเท่านั้น

ดังที่ได้กล่าวไว้ในบทความล่าสุดใน Communications of the ACM ว่า "ความสามารถในการคาดการณ์ของ AI ไม่ได้แปลว่าจะต้องใช้เหตุผลและการตัดสินใจในสถานการณ์ใหม่ๆ" [1] บทความนี้จะสำรวจความท้าทาย ข้อจำกัด และแนวทางแก้ไขที่เป็นไปได้เพื่อหลีกเลี่ยงปัญหาเหล่านี้

กับดักการทำนายคืออะไร?

กับดักการทำนายเกิดขึ้นเมื่อองค์กร:

  1. พวกเขาสับสนระหว่างการทำนายกับเป้าหมายสุดท้าย : บริษัทหลายแห่งเป็นเจ้าของโมเดล AI ที่ซับซ้อนซึ่งสร้างการทำนายที่ยังไม่ได้ใช้งานเนื่องจากพวกเขาไม่ได้สร้างโครงสร้างพื้นฐานขององค์กรเพื่อแปลงข้อมูลเชิงลึกเหล่านั้นให้เป็นการดำเนินการที่เป็นรูปธรรม [2]
  2. พวกเขาล้มเหลวในการเชื่อมช่องว่างระหว่าง "สิ่งที่อาจเกิดขึ้น" และ "สิ่งที่เราควรทำ" : ดังที่เน้นย้ำในบทความ "Beyond Prediction" การนำ AI มาใช้ที่มีประสิทธิผลสูงสุดไม่ได้เพียงแค่คาดการณ์ผลลัพธ์เท่านั้น แต่ยังช่วยกำหนดกรอบการตัดสินใจ ประเมินตัวเลือก และจำลองผลที่อาจเกิดขึ้นจากการเลือกที่แตกต่างกันอีกด้วย [2]
  3. พวกเขาใช้แบบจำลองเชิงทำนายเพื่อการตัดสินใจ : ดังที่ George Stathakopolous ชี้ให้เห็นใน Ad Age ว่า "ผมมักเห็นนักการตลาดพยายามใช้แบบจำลองเชิงทำนายเพื่อการตัดสินใจ ซึ่งไม่ใช่ความผิดพลาดโดยตรง แต่เป็นวิธีดำเนินธุรกิจแบบเก่าที่ยุ่งยากกว่า" [3]

ข้อจำกัดพื้นฐานของ AI เชิงทำนาย

AI เชิงทำนายมีข้อจำกัดโดยธรรมชาติหลายประการที่อาจขัดขวางคุณค่าการตัดสินใจ:

  1. การพึ่งพาข้อมูลในอดีต : "ข้อจำกัดสำคัญของการคาดการณ์ด้วย AI เกิดจากการที่วัตถุดิบที่ AI ใช้ในการคาดการณ์คือข้อมูลในอดีต ดังนั้น AI จึงจำเป็นต้องมุ่งเน้นไปที่อดีตเสมอ" [1] ซึ่งทำให้มีความน่าเชื่อถือน้อยลงสำหรับสถานการณ์ที่ไม่เคยเกิดขึ้นมาก่อนหรือสถานการณ์ที่เปลี่ยนแปลงอย่างรวดเร็ว
  2. ปัญหาความสัมพันธ์เชิงสาเหตุ : ระบบ AI หลายระบบระบุความสัมพันธ์เชิงสาเหตุได้ แต่ไม่สามารถระบุความสัมพันธ์เชิงสาเหตุได้ นี่คือสิ่งที่ผู้เชี่ยวชาญบางคนเรียกว่า "กับดักเชิงสาเหตุ" – ระบบการเรียนรู้ของเครื่องได้รับข้อมูลเชิงลึก "จากความสัมพันธ์เล็กๆ น้อยๆ หลายล้านรายการ" แต่มักไม่สามารถบอกเราได้ว่าคุณลักษณะเฉพาะใดที่ขับเคลื่อนผลลัพธ์ที่เฉพาะเจาะจง [4]
  3. ความท้าทายด้านการตีความ : โมเดลการเรียนรู้ของเครื่องที่ซับซ้อนมักทำหน้าที่เป็น "กล่องดำ" ทำให้ยากต่อการเข้าใจว่าโมเดลเหล่านี้ได้ผลลัพธ์การทำนายบางอย่างมาได้อย่างไร ดังที่ Qymatix กล่าวไว้ว่า "ข้อเสียคือคุณไม่สามารถระบุได้อย่างรวดเร็วว่าฟีเจอร์ใดที่บอกคุณเกี่ยวกับลูกค้ารายใดรายหนึ่งได้มากที่สุด" [4]
  4. อคติยืนยันและการจัดแนว : งานวิจัยแสดงให้เห็นว่า AI อาจได้รับผลกระทบจากอคติในการตัดสินใจ ซึ่งรวมถึงแนวโน้มที่จะ "เน้นย้ำกรอบคำถามของผู้ใช้แทนที่จะท้าทายสมมติฐาน" [5] "อคติการจัดแนว" นี้อาจนำไปสู่คำตอบที่ดูเหมือนสมเหตุสมผล แต่แท้จริงแล้วกลับอิงจากการเชื่อมโยงที่ไม่ค่อยมีการสนับสนุน

เหนือกว่าการคาดการณ์: สู่การปรับปรุงการตัดสินใจที่แท้จริง

เพื่อเอาชนะกับดักการคาดการณ์ บริษัทต่างๆ ควรดำเนินการดังนี้:

  1. เริ่มต้นด้วยการตัดสินใจ ไม่ใช่ข้อมูล : ระบุการตัดสินใจที่สำคัญที่สุด เกิดขึ้นบ่อยที่สุด และยากลำบากที่สุด จากนั้นทำงานย้อนกลับเพื่อพิจารณาว่าความสามารถของ AI ใดบ้างที่สามารถปรับปรุงการตัดสินใจเหล่านั้นได้ [2]
  2. การออกแบบเพื่อการเพิ่มประสิทธิภาพ ไม่ใช่เพื่อการทำงานอัตโนมัติ : สร้างอินเทอร์เฟซและเวิร์กโฟลว์ที่รวมข้อมูลเชิงลึกของ AI เข้ากับการตัดสินใจของมนุษย์ แทนที่จะพยายามเอามนุษย์ออกจากวงจรการตัดสินใจ [2]
  3. สร้างวงจรข้อเสนอแนะการตัดสินใจ : ติดตามผลลัพธ์ของการตัดสินใจอย่างเป็นระบบและรายงานข้อมูลนี้เพื่อปรับปรุง AI และปรับปรุงกระบวนการตัดสินใจ [2]
  4. พัฒนาทักษะการตัดสินใจ : ฝึกอบรมทีมงานไม่เพียงแต่ในด้านทักษะ AI เท่านั้น แต่ยังรวมถึงการทำความเข้าใจอคติในการตัดสินใจ การคิดแบบน่าจะเป็น และการประเมินคุณภาพการตัดสินใจด้วย [2]
  5. การนำ Decision Intelligence มาใช้ : การนำ AI มาใช้อย่างครบถ้วนมากขึ้นกำลังนำ Decision Intelligence มาใช้ ซึ่งเป็นการผสมผสานระหว่างวิทยาศาสตร์ข้อมูล ทฤษฎีการตัดสินใจ และวิทยาศาสตร์พฤติกรรม เพื่อเสริมการตัดสินใจของมนุษย์ [2]

อนาคต: ความร่วมมือระหว่างมนุษย์และ AI

คุณค่าที่แท้จริงของ AI อยู่ที่ความร่วมมือระหว่างมนุษย์และเครื่องจักร ในความร่วมมือนี้:

  • AI ทำหน้าที่ ประมวลผลข้อมูลจำนวนมาก ระบุรูปแบบ วัดความไม่แน่นอน และรักษาความสม่ำเสมอ
  • มนุษย์มีส่วนสนับสนุนใน การทำความเข้าใจบริบท การตัดสินใจอย่างมีจริยธรรม การแก้ปัญหาอย่างสร้างสรรค์ และการสื่อสารระหว่างบุคคล

ดังที่ได้กล่าวไว้ในเอกสาร PMC ของ MIT ฉบับล่าสุดว่า "เพื่อ ทำความเข้าใจ เงื่อนไขที่การตัดสินใจโดยใช้ AI เสริมจะนำไปสู่ประสิทธิภาพที่เสริมซึ่งกันและกัน จะเป็นประโยชน์หากแยกแยะสาเหตุสองประการที่แตกต่างกันของความล้มเหลวที่อาจเกิดขึ้นในการบรรลุประสิทธิภาพที่เสริมซึ่งกันและกัน" [6] งานวิจัยระบุว่าเมื่อการคาดการณ์ของมนุษย์และ AI มีความเป็นอิสระเพียงพอ การผสมผสานกันของทั้งสองวิธีสามารถให้ผลลัพธ์ที่ดีกว่าวิธีการใดวิธีการหนึ่งเพียงอย่างเดียว

บทสรุป

เมื่อเราก้าวเข้าสู่ปี 2025 ความได้เปรียบในการแข่งขันของ AI ไม่ได้มาจากการมีอัลกอริทึมที่ดีขึ้นหรือข้อมูลที่มากขึ้น แต่มาจากการผสานรวม AI เข้ากับกระบวนการตัดสินใจทั่วทั้งองค์กรได้อย่างมีประสิทธิภาพมากขึ้น บริษัทที่เชี่ยวชาญการผสานรวมนี้กำลังเห็นถึงการพัฒนาที่วัดผลได้ ไม่เพียงแต่ในด้านตัวชี้วัดการดำเนินงานเท่านั้น แต่ยังรวมถึงความเร็วในการตัดสินใจ คุณภาพการตัดสินใจ และความสอดคล้องของการตัดสินใจด้วย

การหลีกเลี่ยงกับดักการคาดการณ์จำเป็นต้องอาศัยการเปลี่ยนมุมมอง โดยมองว่า AI ไม่ใช่เป็นเพียงเทคโนโลยีการคาดการณ์ แต่เป็นเทคโนโลยีที่ช่วยเพิ่มประสิทธิภาพการตัดสินใจ ดังที่ซูซาน เอเธย์ จาก MIT Sloan กล่าวไว้ว่า "ฉันพยายามช่วยให้ผู้จัดการเข้าใจว่าอะไรที่ทำให้ปัญหาง่ายหรือยากจากมุมมองของ AI เมื่อพิจารณาจาก AI ที่เรามีอยู่ในปัจจุบัน" [7]

องค์กรที่สามารถรับมือกับความซับซ้อนนี้ได้จะเป็นองค์กรที่จะได้รับประโยชน์สูงสุดจาก AI ในปีต่อๆ ไป

แหล่งที่มา

  1. การสื่อสารของ ACM (เมษายน 2568) - “การคาดการณ์ AI ปรับขนาดให้เข้ากับการตัดสินใจหรือไม่” - https://cacm.acm.org/opinion/does-ai-prediction-scale-to-decision-making/ " id="">https://cacm.acm.org/opinion/does-ai-prediction-scale-to-decision-making/
  2. บทความ "Beyond Prediction" (เมษายน 2568) - "เหตุใดมูลค่าที่แท้จริงของ AI จึงอยู่ในกระบวนการเพิ่มพูนการตัดสินใจ"
  3. Ad Age (พฤศจิกายน 2024) - "วิธีการเปลี่ยนจากการคาดการณ์ AI ไปสู่การตัดสินใจเกี่ยวกับ AI อย่างแท้จริง" - https://adage.com/article/digital-marketing-ad-tech-news/how-pivot-ai-predictions-true-ai-decision-making/2589761
  4. Qymatix (สิงหาคม 2021) - "วิธีหลีกเลี่ยงกับดักความเป็นเหตุเป็นผลของการเรียนรู้ของเครื่องจักรแบบกล่องดำ" - https://qymatix.de/en/causality-trap-machine-learning-black-box/
  5. การส่งเสริมการเสริมอำนาจ (กุมภาพันธ์ 2568) - "กับดักการตัดสินใจของ AI ขั้นสูงสุด: ความปรารถนาที่จะทำให้พอใจ" - https://enablingempowerment.com/ai-decision-making-alignment-bias/
  6. PMC (2024) - "สามความท้าทายสำหรับการตัดสินใจโดยใช้ AI" - https://pmc.ncbi.nlm.nih.gov/articles/PMC11373149/
  7. MIT Sloan Management Review - "อันตรายของการใช้การทำนาย AI กับการตัดสินใจที่ซับซ้อน" - https://sloanreview.mit.edu/article/the-perils-of-applying-ai-prediction-to-complex-decisions/

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

มนุษย์ + เครื่องจักร: สร้างทีมที่ประสบความสำเร็จด้วยเวิร์กโฟลว์ที่ขับเคลื่อนด้วย AI

จะเป็นอย่างไรหากอนาคตของการทำงานไม่ใช่ "มนุษย์ปะทะเครื่องจักร" แต่เป็นความร่วมมือเชิงกลยุทธ์ องค์กรที่ประสบความสำเร็จไม่ได้เลือกระหว่างบุคลากรที่มีความสามารถกับปัญญาประดิษฐ์ แต่พวกเขากำลังสร้างระบบนิเวศที่แต่ละฝ่ายส่งเสริมซึ่งกันและกัน ค้นพบโมเดลการทำงานร่วมกัน 5 แบบที่ได้เปลี่ยนแปลงบริษัทหลายร้อยแห่ง ตั้งแต่การคัดกรองไปจนถึงการโค้ช จากการสำรวจและยืนยันตัวตนไปจนถึงการฝึกงาน ประกอบไปด้วยแผนงานเชิงปฏิบัติ กลยุทธ์ในการเอาชนะอุปสรรคทางวัฒนธรรม และตัวชี้วัดที่เป็นรูปธรรมสำหรับการวัดความสำเร็จของทีมมนุษย์และเครื่องจักร
9 พฤศจิกายน 2568

ภาพลวงตาของการใช้เหตุผล: การถกเถียงที่สั่นคลอนโลก AI

Apple ตีพิมพ์บทความสองฉบับที่สร้างความเสียหายอย่างร้ายแรง ได้แก่ "GSM-Symbolic" (ตุลาคม 2024) และ "The Illusion of Thinking" (มิถุนายน 2025) ซึ่งแสดงให้เห็นว่าหลักสูตร LLM ล้มเหลวในการแก้ปัญหาคลาสสิกแบบเล็กๆ น้อยๆ (เช่น Tower of Hanoi, การข้ามแม่น้ำ) อย่างไร โดยระบุว่า "ประสิทธิภาพลดลงเมื่อเปลี่ยนแปลงเฉพาะค่าตัวเลข" ไม่มีความสำเร็จใดๆ เลยใน Tower of Hanoi ที่ซับซ้อน แต่ Alex Lawsen (Open Philanthropy) โต้แย้งด้วยบทความ "The Illusion of the Illusion of Thinking" ซึ่งแสดงให้เห็นถึงระเบียบวิธีที่มีข้อบกพร่อง ความล้มเหลวเกิดจากข้อจำกัดของผลลัพธ์โทเค็น ไม่ใช่การล่มสลายของเหตุผล สคริปต์อัตโนมัติจัดประเภทผลลัพธ์บางส่วนที่ถูกต้องไม่ถูกต้อง และปริศนาบางอย่างไม่สามารถแก้ทางคณิตศาสตร์ได้ ด้วยการทดสอบซ้ำด้วยฟังก์ชันแบบเรียกซ้ำแทนที่จะแสดงรายการการเคลื่อนที่ Claude/Gemini/GPT จึงสามารถไข Tower of Hanoi ที่มี 15 แผ่นได้ แกรี่ มาร์คัส เห็นด้วยกับแนวคิด "การเปลี่ยนแปลงการกระจายสินค้า" ของ Apple แต่บทความเกี่ยวกับจังหวะเวลาก่อนงาน WWDC กลับตั้งคำถามเชิงกลยุทธ์ ผลกระทบทางธุรกิจ: เราควรไว้วางใจ AI ในงานสำคัญๆ มากน้อยเพียงใด วิธีแก้ปัญหา: แนวทางเชิงสัญลักษณ์ประสาทวิทยา — เครือข่ายประสาทเทียมสำหรับการจดจำรูปแบบ + ภาษา ระบบสัญลักษณ์สำหรับตรรกะเชิงรูปนัย ตัวอย่าง: ระบบบัญชี AI เข้าใจว่า "ฉันใช้จ่ายไปกับการเดินทางเท่าไหร่" แต่ SQL/การคำนวณ/การตรวจสอบภาษี = โค้ดแบบกำหนดตายตัว
9 พฤศจิกายน 2568

🤖 Tech Talk: เมื่อ AI พัฒนาภาษาที่เป็นความลับ

แม้ว่า 61% ของผู้คนจะกังวลกับ AI ที่เข้าใจอยู่แล้ว แต่ในเดือนกุมภาพันธ์ 2025 Gibberlink มียอดวิว 15 ล้านครั้ง ด้วยการนำเสนอสิ่งใหม่สุดขั้ว นั่นคือ AI สองระบบที่หยุดพูดภาษาอังกฤษและสื่อสารกันด้วยเสียงแหลมสูงที่ความถี่ 1875-4500 เฮิรตซ์ ซึ่งมนุษย์ไม่สามารถเข้าใจได้ นี่ไม่ใช่นิยายวิทยาศาสตร์ แต่เป็นโปรโตคอล FSK ที่เพิ่มประสิทธิภาพได้ถึง 80% ทำลายมาตรา 13 ของพระราชบัญญัติ AI ของสหภาพยุโรป และสร้างความทึบแสงสองชั้น นั่นคืออัลกอริทึมที่เข้าใจยากซึ่งประสานงานกันในภาษาที่ถอดรหัสไม่ได้ วิทยาศาสตร์แสดงให้เห็นว่าเราสามารถเรียนรู้โปรโตคอลของเครื่องจักรได้ (เช่น รหัสมอร์สที่ความเร็ว 20-40 คำต่อนาที) แต่เราต้องเผชิญกับขีดจำกัดทางชีววิทยาที่ยากจะเอาชนะ: 126 บิต/วินาทีสำหรับมนุษย์ เทียบกับ Mbps+ สำหรับเครื่องจักร สามอาชีพใหม่กำลังเกิดขึ้น ได้แก่ นักวิเคราะห์โปรโตคอล AI, ผู้ตรวจสอบการสื่อสาร AI และนักออกแบบส่วนต่อประสานระหว่างมนุษย์กับ AI ขณะที่ IBM, Google และ Anthropic กำลังพัฒนามาตรฐาน (ACP, A2A, MCP) เพื่อหลีกเลี่ยงปัญหาที่ยากที่สุด การตัดสินใจเกี่ยวกับโปรโตคอลการสื่อสารของ AI ในปัจจุบันจะกำหนดทิศทางของปัญญาประดิษฐ์ในอีกหลายทศวรรษข้างหน้า