ธุรกิจ

กับดักแห่งการทำนาย: ทำไมการทำนายอนาคตจึงไม่เพียงพอ

แบบจำลองการทำนายที่ซับซ้อนซึ่งสร้างการคาดการณ์ที่ไม่มีใครใช้ นั่นคือ "กับดักการทำนาย" ตามนิยามแล้ว AI คือการมองย้อนหลัง: ข้อมูลในอดีตคือวัตถุดิบ มันระบุความสัมพันธ์ ไม่ใช่สาเหตุ คำถามที่แท้จริงไม่ใช่ "อะไรอาจเกิดขึ้น" แต่เป็น "เราควรทำอย่างไร" บริษัทที่ประสบความสำเร็จในปี 2025 ไม่มีอัลกอริทึมที่ดีกว่า พวกเขาผสานรวม AI เข้ากับกระบวนการตัดสินใจ การเปลี่ยนแปลงมุมมอง: มอง AI ไม่ใช่เทคโนโลยีการทำนาย แต่เป็นเทคโนโลยีที่ช่วยเพิ่มประสิทธิภาพการตัดสินใจ

การแนะนำ

บริษัทหลายแห่งตกอยู่ในสิ่งที่เราเรียกว่า "กับดักการคาดการณ์" ซึ่งก็คือการลงทุนอย่างหนักในเทคโนโลยี AI เชิงคาดการณ์โดยไม่ตระหนักว่าความสามารถเหล่านี้เป็นเพียงส่วนหนึ่งของมูลค่าที่ AI สามารถนำเสนอต่อการตัดสินใจทางธุรกิจเท่านั้น

ดังที่ได้กล่าวไว้ในบทความล่าสุดใน Communications of the ACM ว่า "ความสามารถในการคาดการณ์ของ AI ไม่ได้แปลว่าจะต้องใช้เหตุผลและการตัดสินใจในสถานการณ์ใหม่ๆ" [1] บทความนี้จะสำรวจความท้าทาย ข้อจำกัด และแนวทางแก้ไขที่เป็นไปได้เพื่อหลีกเลี่ยงปัญหาเหล่านี้

กับดักการทำนายคืออะไร?

กับดักการทำนายเกิดขึ้นเมื่อองค์กร:

  1. พวกเขาสับสนระหว่างการทำนายกับเป้าหมายสุดท้าย : บริษัทหลายแห่งเป็นเจ้าของโมเดล AI ที่ซับซ้อนซึ่งสร้างการทำนายที่ยังไม่ได้ใช้งานเนื่องจากพวกเขาไม่ได้สร้างโครงสร้างพื้นฐานขององค์กรเพื่อแปลงข้อมูลเชิงลึกเหล่านั้นให้เป็นการดำเนินการที่เป็นรูปธรรม [2]
  2. พวกเขาล้มเหลวในการเชื่อมช่องว่างระหว่าง "สิ่งที่อาจเกิดขึ้น" และ "สิ่งที่เราควรทำ" : ดังที่เน้นย้ำในบทความ "Beyond Prediction" การนำ AI มาใช้ที่มีประสิทธิผลสูงสุดไม่ได้เพียงแค่คาดการณ์ผลลัพธ์เท่านั้น แต่ยังช่วยกำหนดกรอบการตัดสินใจ ประเมินตัวเลือก และจำลองผลที่อาจเกิดขึ้นจากการเลือกที่แตกต่างกันอีกด้วย [2]
  3. พวกเขาใช้แบบจำลองเชิงทำนายเพื่อการตัดสินใจ : ดังที่ George Stathakopolous ชี้ให้เห็นใน Ad Age ว่า "ผมมักเห็นนักการตลาดพยายามใช้แบบจำลองเชิงทำนายเพื่อการตัดสินใจ ซึ่งไม่ใช่ความผิดพลาดโดยตรง แต่เป็นวิธีดำเนินธุรกิจแบบเก่าที่ยุ่งยากกว่า" [3]

ข้อจำกัดพื้นฐานของ AI เชิงทำนาย

AI เชิงทำนายมีข้อจำกัดโดยธรรมชาติหลายประการที่อาจขัดขวางคุณค่าการตัดสินใจ:

  1. การพึ่งพาข้อมูลในอดีต : "ข้อจำกัดสำคัญของการคาดการณ์ด้วย AI เกิดจากการที่วัตถุดิบที่ AI ใช้ในการคาดการณ์คือข้อมูลในอดีต ดังนั้น AI จึงจำเป็นต้องมุ่งเน้นไปที่อดีตเสมอ" [1] ซึ่งทำให้มีความน่าเชื่อถือน้อยลงสำหรับสถานการณ์ที่ไม่เคยเกิดขึ้นมาก่อนหรือสถานการณ์ที่เปลี่ยนแปลงอย่างรวดเร็ว
  2. ปัญหาความสัมพันธ์เชิงสาเหตุ : ระบบ AI หลายระบบระบุความสัมพันธ์เชิงสาเหตุได้ แต่ไม่สามารถระบุความสัมพันธ์เชิงสาเหตุได้ นี่คือสิ่งที่ผู้เชี่ยวชาญบางคนเรียกว่า "กับดักเชิงสาเหตุ" – ระบบการเรียนรู้ของเครื่องได้รับข้อมูลเชิงลึก "จากความสัมพันธ์เล็กๆ น้อยๆ หลายล้านรายการ" แต่มักไม่สามารถบอกเราได้ว่าคุณลักษณะเฉพาะใดที่ขับเคลื่อนผลลัพธ์ที่เฉพาะเจาะจง [4]
  3. ความท้าทายด้านการตีความ : โมเดลการเรียนรู้ของเครื่องที่ซับซ้อนมักทำหน้าที่เป็น "กล่องดำ" ทำให้ยากต่อการเข้าใจว่าโมเดลเหล่านี้ได้ผลลัพธ์การทำนายบางอย่างมาได้อย่างไร ดังที่ Qymatix กล่าวไว้ว่า "ข้อเสียคือคุณไม่สามารถระบุได้อย่างรวดเร็วว่าฟีเจอร์ใดที่บอกคุณเกี่ยวกับลูกค้ารายใดรายหนึ่งได้มากที่สุด" [4]
  4. อคติยืนยันและการจัดแนว : งานวิจัยแสดงให้เห็นว่า AI อาจได้รับผลกระทบจากอคติในการตัดสินใจ ซึ่งรวมถึงแนวโน้มที่จะ "เน้นย้ำกรอบคำถามของผู้ใช้แทนที่จะท้าทายสมมติฐาน" [5] "อคติการจัดแนว" นี้อาจนำไปสู่คำตอบที่ดูเหมือนสมเหตุสมผล แต่แท้จริงแล้วกลับอิงจากการเชื่อมโยงที่ไม่ค่อยมีการสนับสนุน

เหนือกว่าการคาดการณ์: สู่การปรับปรุงการตัดสินใจที่แท้จริง

เพื่อเอาชนะกับดักการคาดการณ์ บริษัทต่างๆ ควรดำเนินการดังนี้:

  1. เริ่มต้นด้วยการตัดสินใจ ไม่ใช่ข้อมูล : ระบุการตัดสินใจที่สำคัญที่สุด เกิดขึ้นบ่อยที่สุด และยากลำบากที่สุด จากนั้นทำงานย้อนกลับเพื่อพิจารณาว่าความสามารถของ AI ใดบ้างที่สามารถปรับปรุงการตัดสินใจเหล่านั้นได้ [2]
  2. การออกแบบเพื่อการเพิ่มประสิทธิภาพ ไม่ใช่เพื่อการทำงานอัตโนมัติ : สร้างอินเทอร์เฟซและเวิร์กโฟลว์ที่รวมข้อมูลเชิงลึกของ AI เข้ากับการตัดสินใจของมนุษย์ แทนที่จะพยายามเอามนุษย์ออกจากวงจรการตัดสินใจ [2]
  3. สร้างวงจรข้อเสนอแนะการตัดสินใจ : ติดตามผลลัพธ์ของการตัดสินใจอย่างเป็นระบบและรายงานข้อมูลนี้เพื่อปรับปรุง AI และปรับปรุงกระบวนการตัดสินใจ [2]
  4. พัฒนาทักษะการตัดสินใจ : ฝึกอบรมทีมงานไม่เพียงแต่ในด้านทักษะ AI เท่านั้น แต่ยังรวมถึงการทำความเข้าใจอคติในการตัดสินใจ การคิดแบบน่าจะเป็น และการประเมินคุณภาพการตัดสินใจด้วย [2]
  5. การนำ Decision Intelligence มาใช้ : การนำ AI มาใช้อย่างครบถ้วนมากขึ้นกำลังนำ Decision Intelligence มาใช้ ซึ่งเป็นการผสมผสานระหว่างวิทยาศาสตร์ข้อมูล ทฤษฎีการตัดสินใจ และวิทยาศาสตร์พฤติกรรม เพื่อเสริมการตัดสินใจของมนุษย์ [2]

อนาคต: ความร่วมมือระหว่างมนุษย์และ AI

คุณค่าที่แท้จริงของ AI อยู่ที่ความร่วมมือระหว่างมนุษย์และเครื่องจักร ในความร่วมมือนี้:

  • AI ทำหน้าที่ ประมวลผลข้อมูลจำนวนมาก ระบุรูปแบบ วัดความไม่แน่นอน และรักษาความสม่ำเสมอ
  • มนุษย์มีส่วนสนับสนุนใน การทำความเข้าใจบริบท การตัดสินใจอย่างมีจริยธรรม การแก้ปัญหาอย่างสร้างสรรค์ และการสื่อสารระหว่างบุคคล

ดังที่ได้กล่าวไว้ในเอกสาร PMC ของ MIT ฉบับล่าสุดว่า "เพื่อ ทำความเข้าใจ เงื่อนไขที่การตัดสินใจโดยใช้ AI เสริมจะนำไปสู่ประสิทธิภาพที่เสริมซึ่งกันและกัน จะเป็นประโยชน์หากแยกแยะสาเหตุสองประการที่แตกต่างกันของความล้มเหลวที่อาจเกิดขึ้นในการบรรลุประสิทธิภาพที่เสริมซึ่งกันและกัน" [6] งานวิจัยระบุว่าเมื่อการคาดการณ์ของมนุษย์และ AI มีความเป็นอิสระเพียงพอ การผสมผสานกันของทั้งสองวิธีสามารถให้ผลลัพธ์ที่ดีกว่าวิธีการใดวิธีการหนึ่งเพียงอย่างเดียว

บทสรุป

เมื่อเราก้าวเข้าสู่ปี 2025 ความได้เปรียบในการแข่งขันของ AI ไม่ได้มาจากการมีอัลกอริทึมที่ดีขึ้นหรือข้อมูลที่มากขึ้น แต่มาจากการผสานรวม AI เข้ากับกระบวนการตัดสินใจทั่วทั้งองค์กรได้อย่างมีประสิทธิภาพมากขึ้น บริษัทที่เชี่ยวชาญการผสานรวมนี้กำลังเห็นถึงการพัฒนาที่วัดผลได้ ไม่เพียงแต่ในด้านตัวชี้วัดการดำเนินงานเท่านั้น แต่ยังรวมถึงความเร็วในการตัดสินใจ คุณภาพการตัดสินใจ และความสอดคล้องของการตัดสินใจด้วย

การหลีกเลี่ยงกับดักการคาดการณ์จำเป็นต้องอาศัยการเปลี่ยนมุมมอง โดยมองว่า AI ไม่ใช่เป็นเพียงเทคโนโลยีการคาดการณ์ แต่เป็นเทคโนโลยีที่ช่วยเพิ่มประสิทธิภาพการตัดสินใจ ดังที่ซูซาน เอเธย์ จาก MIT Sloan กล่าวไว้ว่า "ฉันพยายามช่วยให้ผู้จัดการเข้าใจว่าอะไรที่ทำให้ปัญหาง่ายหรือยากจากมุมมองของ AI เมื่อพิจารณาจาก AI ที่เรามีอยู่ในปัจจุบัน" [7]

องค์กรที่สามารถรับมือกับความซับซ้อนนี้ได้จะเป็นองค์กรที่จะได้รับประโยชน์สูงสุดจาก AI ในปีต่อๆ ไป

แหล่งที่มา

  1. การสื่อสารของ ACM (เมษายน 2568) - “การคาดการณ์ AI ปรับขนาดให้เข้ากับการตัดสินใจหรือไม่” - https://cacm.acm.org/opinion/does-ai-prediction-scale-to-decision-making/ " id="">https://cacm.acm.org/opinion/does-ai-prediction-scale-to-decision-making/
  2. บทความ "Beyond Prediction" (เมษายน 2568) - "เหตุใดมูลค่าที่แท้จริงของ AI จึงอยู่ในกระบวนการเพิ่มพูนการตัดสินใจ"
  3. Ad Age (พฤศจิกายน 2024) - "วิธีการเปลี่ยนจากการคาดการณ์ AI ไปสู่การตัดสินใจเกี่ยวกับ AI อย่างแท้จริง" - https://adage.com/article/digital-marketing-ad-tech-news/how-pivot-ai-predictions-true-ai-decision-making/2589761
  4. Qymatix (สิงหาคม 2021) - "วิธีหลีกเลี่ยงกับดักความเป็นเหตุเป็นผลของการเรียนรู้ของเครื่องจักรแบบกล่องดำ" - https://qymatix.de/en/causality-trap-machine-learning-black-box/
  5. การส่งเสริมการเสริมอำนาจ (กุมภาพันธ์ 2568) - "กับดักการตัดสินใจของ AI ขั้นสูงสุด: ความปรารถนาที่จะทำให้พอใจ" - https://enablingempowerment.com/ai-decision-making-alignment-bias/
  6. PMC (2024) - "สามความท้าทายสำหรับการตัดสินใจโดยใช้ AI" - https://pmc.ncbi.nlm.nih.gov/articles/PMC11373149/
  7. MIT Sloan Management Review - "อันตรายของการใช้การทำนาย AI กับการตัดสินใจที่ซับซ้อน" - https://sloanreview.mit.edu/article/the-perils-of-applying-ai-prediction-to-complex-decisions/

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

คู่มือซอฟต์แวร์ Business Intelligence ฉบับสมบูรณ์สำหรับ SMB

SMEs อิตาลี 60% ยอมรับว่ายังมีช่องว่างสำคัญในการฝึกอบรมด้านข้อมูล ขณะที่ 29% ไม่มีแม้แต่ตัวเลขเฉพาะเจาะจง ขณะที่ตลาด BI ของอิตาลีกำลังเติบโตอย่างรวดเร็วจาก 36.79 พันล้านดอลลาร์สหรัฐ เป็น 69.45 พันล้านดอลลาร์สหรัฐ ภายในปี 2034 (อัตราการเติบโตเฉลี่ยต่อปีอยู่ที่ 8.56%) ปัญหาไม่ได้อยู่ที่เทคโนโลยี แต่อยู่ที่วิธีการ SMEs กำลังจมอยู่กับข้อมูลที่กระจัดกระจายอยู่ใน CRM, ERP และสเปรดชีต Excel โดยไม่ได้นำข้อมูลเหล่านั้นมาประกอบการตัดสินใจ ซึ่งใช้ได้กับทั้งผู้ที่เริ่มต้นตั้งแต่ต้นและผู้ที่กำลังมองหาการปรับปรุงประสิทธิภาพ เกณฑ์การคัดเลือกที่สำคัญ ได้แก่ ความสามารถในการใช้งานแบบลากและวางโดยไม่ต้องฝึกอบรมหลายเดือน ความสามารถในการปรับขนาดที่เติบโตไปพร้อมกับคุณ การผสานรวมกับระบบเดิมที่มีอยู่ ต้นทุนการเป็นเจ้าของ (TCO) ที่สมบูรณ์ (การติดตั้ง + การฝึกอบรม + การบำรุงรักษา) เทียบกับราคาใบอนุญาตเพียงอย่างเดียว แผนงานสี่ระยะประกอบด้วยวัตถุประสงค์ SMART ที่วัดผลได้ (ลดอัตราการยกเลิกบริการลง 15% ภายใน 6 เดือน) การจัดทำแผนผังแหล่งข้อมูลที่สะอาด (ข้อมูลขยะเข้า = ข้อมูลขยะออก) การฝึกอบรมทีมเกี่ยวกับวัฒนธรรมข้อมูล และโครงการนำร่องที่มีวงจรป้อนกลับอย่างต่อเนื่อง AI เปลี่ยนแปลงทุกสิ่งทุกอย่าง ตั้งแต่ BI เชิงบรรยาย (สิ่งที่เกิดขึ้น) ไปจนถึงการวิเคราะห์เสริมที่เปิดเผยรูปแบบที่ซ่อนอยู่ การวิเคราะห์เชิงทำนายที่ประเมินความต้องการในอนาคต และการวิเคราะห์เชิงกำหนดที่แนะนำการดำเนินการที่เป็นรูปธรรม Electe กระจายอำนาจนี้ให้กับ SMEs
9 พฤศจิกายน 2568

ระบบระบายความร้อน AI ของ Google DeepMind: ปัญญาประดิษฐ์ปฏิวัติประสิทธิภาพการใช้พลังงานของศูนย์ข้อมูลอย่างไร

Google DeepMind ประหยัดพลังงานระบบทำความเย็นในศูนย์ข้อมูลได้ -40% (แต่ใช้พลังงานรวมเพียง -4% เนื่องจากระบบทำความเย็นคิดเป็น 10% ของพลังงานรวมทั้งหมด) โดยมีความแม่นยำ 99.6% และความผิดพลาด 0.4% บน PUE 1.1 โดยใช้การเรียนรู้เชิงลึก 5 ชั้น โหนด 50 โหนด ตัวแปรอินพุต 19 ตัว จากตัวอย่างการฝึกอบรม 184,435 ตัวอย่าง (ข้อมูล 2 ปี) ได้รับการยืนยันใน 3 สถานที่: สิงคโปร์ (ใช้งานครั้งแรกในปี 2016), Eemshaven, Council Bluffs (ลงทุน 5 พันล้านดอลลาร์) ค่า PUE ทั่วทั้งกลุ่มผลิตภัณฑ์ของ Google อยู่ที่ 1.09 เทียบกับค่าเฉลี่ยของอุตสาหกรรมที่ 1.56-1.58 ระบบควบคุมเชิงคาดการณ์ (Model Predictive Control) คาดการณ์อุณหภูมิ/แรงดันในชั่วโมงถัดไป พร้อมกับจัดการภาระงานด้านไอที สภาพอากาศ และสถานะของอุปกรณ์ไปพร้อมๆ กัน ความปลอดภัยที่รับประกัน: การตรวจสอบสองระดับ ผู้ปฏิบัติงานสามารถปิดใช้งาน AI ได้ตลอดเวลา ข้อจำกัดสำคัญ: ไม่มีการตรวจสอบอิสระจากบริษัทตรวจสอบบัญชี/ห้องปฏิบัติการระดับชาติ แต่ละศูนย์ข้อมูลต้องใช้แบบจำลองที่กำหนดเอง (8 ปี ไม่เคยนำไปใช้ในเชิงพาณิชย์) ระยะเวลาดำเนินการ: 6-18 เดือน ต้องใช้ทีมสหสาขาวิชาชีพ (วิทยาศาสตร์ข้อมูล, ระบบปรับอากาศ (HVAC), การจัดการสิ่งอำนวยความสะดวก) ครอบคลุมพื้นที่นอกเหนือจากศูนย์ข้อมูล: โรงงานอุตสาหกรรม โรงพยาบาล ศูนย์การค้า และสำนักงานต่างๆ ปี 2024-2025: Google เปลี่ยนไปใช้ระบบระบายความร้อนด้วยของเหลวโดยตรงสำหรับ TPU v5p ซึ่งบ่งชี้ถึงข้อจำกัดในทางปฏิบัติของการเพิ่มประสิทธิภาพ AI
9 พฤศจิกายน 2568

แซม อัลท์แมน และ AI Paradox: "ฟองสบู่เพื่อคนอื่น ล้านล้านเพื่อเรา"

"เราอยู่ในฟองสบู่ AI รึเปล่า? ใช่!" — แซม อัลท์แมน ประกาศการลงทุนมูลค่าล้านล้านดอลลาร์ใน OpenAI เขาพูดคำว่า "ฟองสบู่" ซ้ำสามครั้งภายใน 15 วินาที โดยรู้ดีว่ามันจะเป็นอย่างไร แต่จุดพลิกผันคือ เบซอสแยกแยะระหว่างฟองสบู่อุตสาหกรรม (ทิ้งโครงสร้างพื้นฐานที่ยั่งยืน) และฟองสบู่การเงิน (การล่มสลายไร้ค่า) ปัจจุบัน OpenAI มีมูลค่า 5 แสนล้านดอลลาร์สหรัฐ และมีผู้ใช้งาน 800 ล้านคนต่อสัปดาห์ กลยุทธ์ที่แท้จริงคืออะไร? ลดกระแสโฆษณาลงเพื่อหลีกเลี่ยงกฎระเบียบ เสริมสร้างความเป็นผู้นำ ผู้ที่มีพื้นฐานที่มั่นคงจะประสบความสำเร็จ
9 พฤศจิกายน 2568

ทำไมคณิตศาสตร์ถึงยาก (แม้ว่าคุณจะเป็น AI ก็ตาม)

แบบจำลองภาษาไม่สามารถคูณได้ พวกมันจดจำผลลัพธ์ได้เหมือนกับที่เราจดจำค่าพาย แต่ไม่ได้หมายความว่าพวกมันมีความสามารถทางคณิตศาสตร์ ปัญหาอยู่ที่โครงสร้าง พวกมันเรียนรู้ผ่านความคล้ายคลึงทางสถิติ ไม่ใช่ความเข้าใจเชิงอัลกอริทึม แม้แต่ "แบบจำลองการใช้เหตุผล" ใหม่ๆ อย่าง o1 ก็ยังล้มเหลวในงานเล็กๆ น้อยๆ เช่น มันสามารถนับตัว 'r' ในคำว่า "strawberry" ได้อย่างถูกต้องหลังจากประมวลผลเพียงไม่กี่วินาที แต่ล้มเหลวเมื่อต้องเขียนย่อหน้าโดยที่ตัวอักษรตัวที่สองของแต่ละประโยคสะกดเป็นคำ เวอร์ชันพรีเมียมราคา 200 ดอลลาร์ต่อเดือนใช้เวลาสี่นาทีในการแก้ปัญหาสิ่งที่เด็กสามารถทำได้ทันที DeepSeek และ Mistral ยังคงนับตัวอักษรไม่ถูกต้องในปี 2025 วิธีแก้ปัญหาที่กำลังเกิดขึ้น? วิธีการแบบผสมผสาน แบบจำลองที่ชาญฉลาดที่สุดได้ค้นพบว่าเมื่อใดจึงควรเรียกใช้เครื่องคิดเลขจริง แทนที่จะพยายามคำนวณเอง การเปลี่ยนแปลงกระบวนทัศน์: AI ไม่จำเป็นต้องรู้วิธีทำทุกอย่าง แต่สามารถจัดสรรเครื่องมือที่เหมาะสมได้ พาราด็อกซ์สุดท้าย: GPT-4 สามารถอธิบายทฤษฎีลิมิตได้อย่างยอดเยี่ยม แต่กลับไม่สามารถแก้โจทย์การคูณที่เครื่องคิดเลขพกพามักจะแก้ได้อย่างถูกต้อง GPT-4 เหมาะอย่างยิ่งสำหรับการศึกษาคณิตศาสตร์ เพราะสามารถอธิบายด้วยความอดทนอย่างไม่มีที่สิ้นสุด ดัดแปลงตัวอย่าง และวิเคราะห์เหตุผลที่ซับซ้อนได้ หากต้องการการคำนวณที่แม่นยำ เชื่อเครื่องคิดเลขเถอะ ไม่ใช่ปัญญาประดิษฐ์