Newsletter

การเอาชนะอุปสรรค หรือ: ฉันเรียนรู้ที่จะหยุดกังวลและรักปัญญาประดิษฐ์ได้อย่างไร

ทำไมบริษัทจำนวนมากจึงล้มเหลวในการนำ AI มาใช้? อุปสรรคสำคัญไม่ใช่เทคโนโลยี แต่คือมนุษย์ บทความนี้ระบุถึงอุปสรรคสำคัญ 6 ประการ ได้แก่ การต่อต้านการเปลี่ยนแปลง การขาดการมีส่วนร่วมของฝ่ายบริหาร ความปลอดภัยของข้อมูล งบประมาณที่จำกัด การปฏิบัติตามข้อกำหนด และการเรียนรู้อย่างต่อเนื่อง ทางออกคืออะไร? การเปิดตัวโครงการนำร่องเพื่อแสดงให้เห็นถึงคุณค่า ฝึกอบรมพนักงาน และปกป้องข้อมูลสำคัญด้วยระบบเฉพาะทาง AI ไม่เพียงแต่ช่วยเพิ่มประสิทธิภาพ ไม่ใช่แทนที่ แต่จำเป็นต้องอาศัยการเปลี่ยนแปลงกระบวนการ ไม่ใช่เพียงแค่การแปลงเป็นดิจิทัล

การทำลายอุปสรรค: อัลกอริทึมภายในตัวเรา

ปัญญาประดิษฐ์ (AI) กำลังเปลี่ยนแปลงวิธีการทำงานของเรา หลายบริษัทกำลังเผชิญกับความท้าทายในการนำเครื่องมือใหม่ๆ เหล่านี้ไปใช้ในกระบวนการต่างๆ ได้อย่างมีประสิทธิภาพ การเข้าใจอุปสรรคเหล่านี้จะช่วยให้องค์กรต่างๆ สามารถใช้ประโยชน์จาก AI ได้อย่างมีประสิทธิภาพ

ความท้าทายของการอัปเดตอย่างต่อเนื่อง

การพัฒนาอย่างรวดเร็วของ AI ก่อให้เกิดความท้าทายใหม่ๆ แก่ทั้งมืออาชีพและธุรกิจ คนงานต่างกังวลว่า AI จะเข้ามาแทนที่ อย่างไรก็ตาม AI ทำหน้าที่เป็นเครื่องมือที่ช่วยยกระดับงานของพวกเขา ไม่ใช่เข้ามาแทนที่ ผ่านทาง:

  • การทำงานซ้ำๆ ให้เป็นอัตโนมัติ
  • พื้นที่สำหรับกิจกรรมเชิงยุทธศาสตร์
  • การสนับสนุนการตัดสินใจด้วยข้อมูล

การนำเสนอ AI ในฐานะเครื่องมือการทำงานร่วมกันช่วยลดแรงต่อต้านและส่งเสริมการนำเทคโนโลยีนี้มาใช้ แน่นอนว่างานบางอย่างจะหายไปเมื่อเวลาผ่านไป แต่โชคดีที่งานน่าเบื่อที่สุดจะหมดไป ซึ่งหมายถึงไม่ใช่แค่การนำเทคโนโลยีมาใช้ในกระบวนการเท่านั้น แต่ยังรวมถึงการเปลี่ยนแปลงกระบวนการทั้งหมดด้วย กล่าวโดยสรุปคือ ความแตกต่างระหว่างการเปลี่ยนผ่านสู่ดิจิทัลและการเปลี่ยนผ่านสู่ดิจิทัล เรียนรู้เพิ่มเติมได้ที่: https://www.channelinsider.com/business-management/digitization-vs-digitalization/

การคุ้มครองและรักษาความปลอดภัยข้อมูล

ความเป็นส่วนตัวและความปลอดภัยเป็นอุปสรรคสำคัญ บริษัทต่างๆ จำเป็นต้องปกป้องข้อมูลสำคัญโดยการรับรองความถูกต้องแม่นยำของระบบ AI ความเสี่ยงจากการละเมิดและข้อมูลที่ผิดพลาดจำเป็นต้อง:

  • การตรวจสอบความปลอดภัยเป็นประจำ
  • การประเมินซัพพลายเออร์
  • โปรโตคอลการปกป้องข้อมูล

โดยเฉพาะอย่างยิ่ง การใช้ " ตัวกรองอัตโนมัติ " ในการจัดการข้อมูลที่ละเอียดอ่อนที่สุด และการใช้ระบบเฉพาะในการจัดการหรือวิเคราะห์ข้อมูลทั้งหมดขององค์กร ถือเป็นสิ่งจำเป็นอย่างยิ่ง ไม่เพียงแต่ด้วยเหตุผลด้านความปลอดภัยเท่านั้น แต่ยังเพื่อหลีกเลี่ยงการ "เปิดเผย" ข้อมูลที่มีค่าสูงแก่บุคคลที่สามอีกด้วย อย่างไรก็ตาม เช่นเดียวกับที่เกิดขึ้นแล้วในบริบทอื่นๆ การมุ่งเน้นในลักษณะนี้จะยังคงเป็นแนวทางที่ "รอบรู้" เฉพาะสำหรับบางองค์กรเท่านั้น ท้ายที่สุดแล้ว ทุกคนควรทำในสิ่งที่ตนเองต้องการ โดยตระหนักถึงผลประโยชน์ที่แต่ละทางเลือกต้องแลกมาด้วย

ด้านล่างนี้เป็นรายการสั้นๆ ของประเด็นสำคัญ

การจัดการความต้านทานต่อการเปลี่ยนแปลง

การรับเลี้ยงบุตรบุญธรรมต้องมีกลยุทธ์การจัดการที่รวมถึง:

  • การสื่อสารผลประโยชน์
  • การฝึกอบรมอย่างต่อเนื่อง
  • การสนับสนุนเชิงปฏิบัติ
  • การจัดการข้อเสนอแนะ

แนวทางจากบนลงล่าง

ผู้มีอำนาจตัดสินใจต้องการหลักฐานยืนยันคุณค่าของ AI กลยุทธ์ที่มีประสิทธิภาพ:

  • แสดงเรื่องราวความสำเร็จของคู่แข่ง
  • โครงการนำร่องการสาธิต
  • ตัวชี้วัด ROI ที่ชัดเจน
  • แสดงให้เห็นถึงการมีส่วนร่วมของพนักงาน

การจัดการข้อจำกัดด้านงบประมาณ

งบประมาณและโครงสร้างพื้นฐานที่ไม่เพียงพอเป็นอุปสรรคต่อการใช้งาน องค์กรต่างๆ สามารถ:

  • เริ่มต้นด้วยโครงการเล็กๆ
  • ขยายตามผลลัพธ์
  • จัดสรรทรัพยากรอย่างรอบคอบ

ด้านกฎหมายและจริยธรรม

การดำเนินการจะต้องคำนึงถึง:

  • ความเป็นกลางและความเป็นธรรม
  • การปฏิบัติตามกฎระเบียบ
  • กฎเกณฑ์การใช้งานอย่างมีความรับผิดชอบ
  • การติดตามการพัฒนากฎหมาย

การอัปเดตอย่างต่อเนื่อง

องค์กรจะต้อง:

  • ติดตามความคืบหน้าที่เกี่ยวข้อง
  • มีส่วนร่วมในชุมชนอุตสาหกรรม
  • ใช้แหล่งข้อมูลที่น่าเชื่อถือ

มุมมอง

การรับเลี้ยงบุตรบุญธรรมที่มีประสิทธิผลต้องอาศัย:

  • แนวทางเชิงกลยุทธ์
  • การใส่ใจต่อการเปลี่ยนแปลงขององค์กร
  • การจัดแนวให้สอดคล้องกับเป้าหมายและวัฒนธรรมขององค์กร
  • มุ่งเน้นคุณค่าเชิงปฏิบัติ

การเปลี่ยนแปลงที่มีประสิทธิผลจะช่วยปรับปรุงการดำเนินงานและความสามารถของพนักงานผ่านการเลือกที่ยั่งยืนและมีเป้าหมาย

ทรัพยากรเพื่อการเติบโตทางธุรกิจ

9 พฤศจิกายน 2568

Creative Frankenstein: การต่อสู้ทางกฎหมายระหว่าง AI และลิขสิทธิ์

กุมภาพันธ์ 2025: ศาลชั้นต้นปฏิเสธการใช้ AI อย่างเป็นธรรมอย่างเด็ดขาด ทอมสัน รอยเตอร์ส ชนะคดี แต่สองเดือนต่อมา ผู้พิพากษาท่านอื่นๆ กลับตัดสินในทางตรงกันข้าม นั่นคือ กฎหมายที่กระจัดกระจาย จากนั้นดิสนีย์และยูนิเวอร์แซลก็ฟ้องร้องมิดเจอร์นีย์ในข้อหา "คัดลอกโดยไม่ได้รับอนุญาต" เป็นเงิน 300 ล้านดอลลาร์สหรัฐต่อปี ความขัดแย้ง: จะพิสูจน์ความเสียหายทางเศรษฐกิจอย่างกว้างขวางจากภาพหลายพันล้านภาพได้อย่างไร? ยุโรปตอบโต้ด้วยความโปร่งใสที่บังคับ ในขณะที่สหรัฐอเมริกากลับมีคดีความมูลค่าหลายร้อยล้านดอลลาร์ ปี 2025 ไม่ได้นำมาซึ่งความชัดเจน แต่กลับเผยให้เห็นถึงความวุ่นวาย
9 พฤศจิกายน 2568

ข้อมูลการฝึกอบรม AI: ธุรกิจมูลค่า 10,000 ล้านดอลลาร์ที่ขับเคลื่อนปัญญาประดิษฐ์

Scale AI มีมูลค่า 29 พันล้านดอลลาร์สหรัฐ และคุณอาจไม่เคยได้ยินมาก่อน มันคืออุตสาหกรรมข้อมูลการฝึกอบรมที่มองไม่เห็นที่ขับเคลื่อน ChatGPT และ Stable Diffusion ซึ่งเป็นตลาดมูลค่า 9.58 พันล้านดอลลาร์สหรัฐที่เติบโต 27.7% ต่อปี ต้นทุนเพิ่มขึ้นถึง 4,300% ตั้งแต่ปี 2020 (Gemini Ultra: 192 ล้านดอลลาร์สหรัฐ) แต่ภายในปี 2028 จะไม่มีข้อความมนุษย์ที่เผยแพร่สู่สาธารณะอีกต่อไป ในขณะเดียวกัน พบคดีความละเมิดลิขสิทธิ์และหนังสือเดินทางหลายล้านเล่มในชุดข้อมูล สำหรับบริษัท: คุณสามารถเริ่มต้นใช้งานได้ฟรีด้วย Hugging Face และ Google Colab
9 พฤศจิกายน 2568

ธุรกิจในสมัยก่อนที่ดี: ความคิดถึงในฐานะข้อได้เปรียบในการแข่งขัน

ขณะที่ OpenAI และ Anthropic ยังคงแสวงหารูปแบบธุรกิจที่ยั่งยืน MyHeritage และ FaceApp กำลังพิมพ์เงินด้วยการปรับปรุงภาพถ่ายจากยุค 90 ความจริงที่น่าอึดอัดใจคือ ผู้บริโภคจ่ายเงินมากกว่าเพื่อปรับปรุงอดีตมากกว่าจินตนาการถึงอนาคต นี่คือ "วัฏจักรแห่งความคิดถึง 20 ปี" ที่ AI สร้างรายได้ในช่วงเวลาที่เหมาะสมที่สุด นั่นคือคลังข้อมูลดิจิทัลที่เสื่อมโทรม + เทคโนโลยีในการฟื้นฟู + คนรุ่นที่มีอำนาจซื้อ มูลค่าตลาดจาก 17 พันล้านดอลลาร์สหรัฐ → 50 พันล้านดอลลาร์สหรัฐ ภายในปี 2030 แต่ถ้าเราปรับให้เหมาะสมเพียงเพื่อมองย้อนกลับไป ใครจะเป็นผู้สร้างสรรค์อนาคต?
9 พฤศจิกายน 2568

ปัจจัยที่ซ่อนอยู่ในการแข่งขัน AI: การยอมรับความเสี่ยงและข้อได้เปรียบทางการตลาด

"ผมยอมจ่ายเงินให้ทนายความดีกว่าทำให้ผู้ใช้ผิดหวังกับ AI จอมบงการ" — อีลอน มัสก์ ขณะที่ Grok มีผู้ใช้เพิ่มขึ้น 2.3 ล้านคนภายในหนึ่งสัปดาห์ สงคราม AI ที่แท้จริงในปี 2025 ไม่ใช่เรื่องของเทคโนโลยี อัตราการปฏิเสธของ ChatGPT ที่ 8.7% นำไปสู่อัตราการเลิกใช้ของนักพัฒนาถึง 23% ด้วยอัตราการบล็อกเพียง 3.1% ทำให้ Claude เติบโตขึ้นถึง 142% ตลาดแบ่งออกเป็นสองกลุ่ม: ความปลอดภัยขั้นสูงสุด (รายได้ 70%), สมดุล (อัตรากำไรขั้นต้น B2B สูงสุด), อนุญาต (นักพัฒนาต้องการ 60%) ใครชนะ? ใครคือผู้ที่บริหารจัดการความเสี่ยงและประโยชน์ได้ดีที่สุด